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A B S T R A C T

This paper analyses a model of a pair of electrons collected by means of harmonic confinement V x y( , ) and
subjected to a magnetic field = BzB ˆ perpendicular to the quantum dot layer. Under these circumstances there
exists a coupling between B and the harmonic potential which is going to alter both the effective length of the
electronic functions and the tunnelling rates. The main conclusion of this paper is that, by using a finite potential
barrier, a treatable expression of tunnelling rate is likely to be obtained. Likewise, another outcome is that, by
increasing the magnetic fields, the harmonic confinement equalises the electronic effective widths, that is, both
the x-width and the y-thickness tend to the same asymptotic value. Last but not least, one concludes that the
magnetic field can be used to control the tunnelling rate.

1. Introduction

Quantum confinement develops discrete levels of electrons which
are called quantum dots (QD). As a consequence, the shape of the
confinement plays an important role both in the shell energy and in the
electronic correlation. In fact, one of the most frequent topics in QD
literature is precisely the analysis of the impact of different types of
confinement on quantum dots [1–4], in an attempt to achieve electron
tunnelling and eventually to build quantum processors.Within the
quantum dots scope, the interest aroused by the local magnetic fields
would be due to the fact that they affect the quantum levels and also
involve the spin dynamics. Some effects of applying magnetic fields to
QD would be spin–orbit interaction, spin flip, cyclotron and Zeeman
effects. In general, quantum dots have been associated with magnetic
fields under different angles: tilted [3,5] and perpendicular [6–9]
magnetic fields. The aim of this paper is to analyse the magnetic field
influence upon the tunnelling rate. The article begins by considering a
pair of electrons in a harmonic confinement with two levels, and it
continues by defining the tunnelling rate by means of a finite potential
barrier. Finally, the paper analyses the influence of the magnetic field
on the electronic states and on the tunnelling rate.

2. Electronic functions and tunnelling

The model developed in this paper considers a pair of electrons that
are collected by means of harmonic confinement in order to form a
quantum dot. Each electron can be in a fundamental state –it will be
labelled by the subscript α– or in the first excited state –specified by β–
and, in addition, electrons can have two different spins. The basis is

composed of six states, each of them has an orbital component and a
spin term. Thus the singlet state shares the spin

= ↑ ↓ − ↓ ↑χs 1 2 1 2 but not the orbital terms, which are sym-
metrical combinations of wave functions ϕ r( )n , where =n α β, is used
to designate the electronic level. Then, the singlet state is given by
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here r1 and r2 are position vectors of electrons 1 and 2. Reciprocally, the
triplet state shares the orbital term = −ϕ ϕ ϕ ϕr r r rΦ [ ( ) ( ) ( ) ( )]t α β β α1 2 1 2 but
not the symmetrical spin terms
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Both electrons will be confined by means of a harmonic potential
V x y( , ), inside a thin conduction layer on plane XY , and negligible
thickness =Z δ z( )2 : thin QD approximation [2,10]. Therefore, the
time independent Hamiltonian determines the basis with equations
(1)–(6) be formed from Hemite polynomials. From here on, the pro-
cedure consist in studying the individual electronic behaviour
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considering the eigenstate properties as the combination of the single
electronic magnitudes, such as energy or tunnelling rate. Fig. 1 shows
the probabilities of the electronic ground state ϕα and of ϕβ, the first
excited state. The effective widths are =l a4y 0 along the y direction
and =l a20x 0 along x, where a0 is the effective Bohr radius,

= =a πε ε
m e

4 ℏ 10.35 nm.b
0

0
2

* 2 (7)

In addition, the isolines of the figure follow the sequence
− − − − − − −9.5 10 , 8.0 10 , 6.5 10 , 5.0 10 , 3.5 10 , 2.0 10 , 0.5 104 4 4 4 4 4 4 and
−0.1 10 4.

2.1. Tunnelling

The following lines concern the tunnelling, which will be modelled
by means of a finite potential barrier [11–13]; obviously, this as-
sumption involves the fact that electrons emerge somewhere. Fig. 2
describes this situation. The electronic functions ϕn spread along the
whole space, however these wave functions will become decreasing
exponential =ζ x y ζ x ζ y( , ) ( ) ( )n n n beyond the harmonic confinement.
Thus, the border line separating the harmonic functions from the ex-
ponential behaviour is an ellipse with semi-axis coincident with the
effective widths =l a20x 0 (or l3 x), and =l a4y 0 (or l3 y), where the
values in brackets are applied to the electronic excited state, see Fig. 1.
It is precisely along these ellipses where both ϕ μ( )n and the exponential
function must fulfil the continuity conditions:

= − = −ϕ μ A b μ d
dμ

ϕ μ d
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with =n α β, and =μ x y, . For the sake of clarity, the decreasing ex-
ponential functions along x are given by
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where x starts at lx for ζα, and at l3 x for ζβ. To obtain ζ y( )n it is enough
to replace lx with ly and x with y in equations (9) and (10). Fig. 2 shows
a potential barrier stretching over the grey region to a generic co-
ordinate x; the electronic distribution outside the barrier is again har-
monic functions.

In this study the tunnelling rate is defined by means of the sum of
two terms: the electronic probability of finding electrons inside the
confinement, and the electronic probability of reaching the potential
barrier end. This way, the tunnelling rates along x direction for a
generic end is given by:
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where the subscripts α and β refers to ground state and excited level.
Once more, it is enough to exchange x for y to obtain the y-rates. Both
tunnelling equations exhibit a dependence on the effective widths,
which will be the focus of the next section. Fig. 3 depicts these rates
showing, among other things, that:

Fig. 1. Probability distribution of the electronic states ϕα and ϕβ which corre-
spond to the ground state and the excited state, respectively. The effective
widths are =l a4y 0 and =l a20x 0. The innermost line corresponds to −9.5 10 4

for the α-state and −5.0 10 4 for the β-state. On the other hand, the thick line
illustrates the ellipse of confinement.

Fig. 2. Graphic description of tunnelling along x. The electronic wave functions
ϕ are separated from the potential barrier (the grey area) at the coordinates lx

and l3 x , forming an elliptic border on the plane XY . A generic coordinate x is
used to mark the barrier end; beyond x the wave functions become again
harmonic.

Fig. 3. Tunnelling rate as it was defined in equations (11) and (12). While Γα

starts at lμ, Γβ does at l3 μ, with =μ x y, . Both graphics show maximums that
become constant for large widths. While Γy ’s are linked to high energies, Γx ’s are
related to low energies.

1. The terms ϕn
2 are constant so the variableness of Γn is essentially due to

ζn
2,

2. The tunnelling rates reach maximum values, which become constant for
large distances, and these maximums depend neither on the effective widths
nor on the direction,

3. And there exists a gap between both rates, which in a temporal analysis
would be connected to the time delay between levels.
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