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A B S T R A C T

We theoretically propose a hybrid scheme with nonlinear four-wave mixing process and linear beam splitters
to generate continuous-variable quadripartite entanglement. To expose the entanglement properties of the
generated state, the coupling strength matrix is derived to reveal the interactions of the resulting modes at
first. The generated state is verified to be a -graph state with a non-full rank coupling strength matrix by
using graphical calculus for Gaussian pure states. Then based on the eigenmodes for the generated state, we
find that the introduction of beam splitters does not alter the deduced eigenmodes of the nonlinear four-wave
mixing process, and only contributes to generate quadripartite entanglement. In the end, we quantitatively
investigate the internal entanglement structure of this scheme. Our work paves the way to generate quadripartite
entanglement from a hybrid scheme with nonlinear four-wave mixing process and linear beam splitters.

1. Introduction

Multipartite entanglement, due to its unique properties, plays an
important role not only in the field of testing quantum effects [1],
but also in many applications, ranging from quantum information,
quantum computing to quantum metrology. A large number of different
schemes for generating multipartite entangled beams have already been
theoretically proposed and experimentally implemented [2–8]. The
usual technique depends on the interference of generated quadrature
squeezed states [4]. The scalable optical quantum networks include the
experimental generation of ultra-large-scale continuous variable (CV)
cluster state multiplexed in both the time domain [9] and the frequency
domain [10–12]. The standard method of generating CV entangled
state is by parametric down-conversion in a nonlinear crystal, with an
optical parametric oscillator (OPO). In this way, a very large amount of
quantum correlation can be achieved. Recently, an alternative scheme
to generate CV entanglement is to use the four-wave mixing (FWM)
process in hot Rb vapor. In this scheme, the frequencies of the generated
beams naturally match with the atomic ensembles. This feature is critical
for achieving high efficiency quantum state mapping, storage, and
retrieval for building future quantum networks [13]. In addition, the
FWM process can be used to realize the quantum imaging due to its
multi-spatial-mode nature [14]. This method is phase insensitive and
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single pass, hence it does not require any locking system. Due to these
advantages, this system has found a variety of applications, such as the
generation of tunable delay, low-noise amplification, and advancement
of twin beams or entangled images [14–19]. It has been used as the
fundamental element for a quantum interferometer, which can beat
the standard quantum limit and approach the Heisenberg limit [20–
22]. It has also been used to realize an ultrasensitive measurement
of microcantilever displacement [23] and observe the localized multi-
spatial-mode quadrature squeezing for quantum imaging [24].

Therefore, it is certainly worth developing the potential of the
FWM process in hot Rb vapor as a competitive candidate for pro-
ducing large-scale multipartite entangled states. Very recently, our
group experimentally demonstrated a cascaded FWM process to produce
multiple quantum correlated beams in hot rubidium vapor [25–27]
and theoretically proposed a scheme to generate genuine multipartite
entanglement [28,29]. A scheme to realize versatile quantum networks
by cascading several FWM processes in warm rubidium vapors is also
presented in Ref. [30].

Here we propose a hybrid scheme with nonlinear four-wave mix-
ing process and linear beam splitters to generate CV quadripartite
entanglement. It is theoretically verified that this scheme can generate
quadripartite entanglement in the whole gain and transmission regions.
Additionally, the quantitative analysis of quadripartite entanglement
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Fig. 1. Hybrid scheme for generating quadripartite entanglement. (a) Energy
level diagram of 85Rb D1 line for the single FWM process, the width of the
excited state 5𝑃1∕2 represents the Doppler broadening, and 𝛥 represents the
large detuning from the atomic transition. (b) Schematic view of our proposed
scheme: 𝑃𝑟0 and 𝐶0 are vacuum inputs; 𝑃𝑟1, 𝑃𝑟2, 𝐶1 and 𝐶2 are resulting beams
of second stage.

shows the symmetry of this scheme. The further properties are revealed
by investigating the internal structure of entanglement, i.e., rule out one
or more modes to analyze the genuine multipartite entanglement which
potentially exists among the rest modes.

This paper is organized as follows. In Section 2, we begin with a
brief introduction of a single FWM process and derive expressions for
the output fields produced by this hybrid scheme. Then the adjacency
matrix is extracted from the corresponding covariance matrix (CM)
of the generated state [31]. It is verified that the generated state of
our scheme is a -graph state. Then in Section 3, we proceed with a
review of PPT criterion which we use to test the entanglement among
Gaussian states from this system. In the following Section 4, we use PPT
criterion to analyze the quadripartite entanglement, and investigate the
entanglement structure. In Section 5, we give a brief summary of our
results.

2. Hybrid scheme

Fig. 1(a) depicts the energy level diagram of a single FWM process in
a hot rubidium vapor, where two pump photons can convert to a probe
(signal) photon and a conjugate (idler) photon, or vice versa. The large
detuning 𝛥 of pump beam makes the frequencies of generated probe
and conjugate beam lie outside the Doppler absorption profile [14]. As
a result, the Doppler effect can be neglected in our analysis.

Fig. 1(b) shows how this hybrid scheme operates: a pair of twin
beams are generated by the FWM process, then in the second stage,
the twin beams are split by beams splitters BS1 and BS2 respectively.
During the process in second stage, other two vacuum states 𝑎̂𝜈1 and 𝑎̂𝜈2
are introduced.

For an optical mode 𝑎̂, 𝑋̂𝑎 = 𝑎̂ + 𝑎̂† and 𝑌𝑎 = (𝑎̂ − 𝑎̂†)∕𝑖 stand
for amplitude and phase quadrature, respectively. The commutation
relation can be written as [𝑋̂𝑎, 𝑌𝑎] = 2𝑖. The input–output relations of
this scheme are
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√
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where the 𝐺 is the power gain of the FWM process, 𝐺 − 𝑔 = 1, and 𝜂
stands for the transmissions of BS1 and BS2 (the transmissions of these
two BSs are set to be equal). Therefore, the modulo conventions of this
scheme are
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Eqs. (5) and (6) make it easy to calculate the covariances of modes’
quadrature. Here, two modes’ amplitude quadrature covariance is
⟨𝑋̂𝑗𝑋̂𝑘⟩ = ⟨𝑋̂𝑗𝑋̂𝑘 + 𝑋̂𝑘𝑋̂𝑗⟩∕2− ⟨𝑋̂𝑗⟩⟨𝑋̂𝑘⟩. A similar notation is applied to
the phase quadrature, and ⟨𝑋̂𝑗𝑌𝑘⟩ is zero in this scheme. Therefore, all
the covariances of resulting beams are
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and
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It is straightforward to see that the power gain 𝐺 and transmission
𝜂 both affect the covariances in our scheme. To analyze the internal
interactions of modes, we calculate the eigenmodes of generated states.
From the Ref. [30], the eigenvalues of the FWM process in first stage
are 𝜈+ = (

√

𝐺 +
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𝑔)2 and 𝜈− = (
√

𝐺 −
√

𝑔)2 . It can be verified
that the values of eigenmodes are not altered after the second stage is
introduced, but two vacuum states are introduced. This is due to the fact
that two BSs do not introduce extra nonlinear quantum correlation.

Then we use the graphical calculus for Gaussian pure states to
derive the adjacency matrix of the generated state. The corresponding
adjacency matrix 𝑍 of this generated state is
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From Z, we conclude that this generated state yields a graph where
all the nodes are connected within each other, and with weights that
vary and depend on the 𝐺 and 𝜂. Additionally, the purely imaginary
adjacency matrix 𝑍 can correspond to a -graph state, if there exists
a real, symmetric matrix 𝐴 such that 𝑍 = 𝑖𝑒−2𝛼𝐴 is satisfied (cosh 𝛼 =
√

𝐺) [31]. We verify the generated state is a -graph state since 𝐴 is

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
√

𝜂(1 − 𝜂) 𝜂
0 0

√

(1 − 𝜂)
√

𝜂(1 − 𝜂)
√

𝜂(1 − 𝜂)
√

(1 − 𝜂) 0 0
𝜂

√

𝜂(1 − 𝜂) 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (10)

This result not only contributes to verify that the generated state is
a -graph state, but also help reveal the internal interactions of the
generated modes. Since aforementioned Hamiltonian is of the form

 = 𝑖ℏ𝛼𝐴𝑗𝑘(𝑎̂
†
𝑗 𝑎̂

†
𝑘 − 𝑎̂𝑗 𝑎̂𝑘) (11)

where 𝐴𝑗𝑘 denotes the interaction of two fields.
Additionally, the coupling strengths matrix is verified to be non-

full rank. Therefore, the generated state cannot correspond to a CV
cluster state in the limits of large power gain with phase shift opera-
tions [31,32]. These results are to be expected, since the introduction of
second stage does not alter the essence of FWM process.

After having assessed the generated state is a -graph state, and
exposed the internal interactions among the generated modes, we
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