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A B S T R A C T

We investigate the exact entanglement dynamics of two classical-driven atoms, each of which is embedded in
a single-end photonic crystal waveguide. The finite end of the waveguide behaves as a perfect mirror, forcing
part of the emitted light to return back to the atom. The round-trip time between the mirror and the atom is
equivalent to the memory time of the open system. It is shown that, the memory time and the classical driving
strength are two ingredients whose interplay plays a key role in controlling entanglement. By manipulating the
two ingredients, a bound atom–photon state appears in atom–mirror interspace so as to induce entanglement
trapping. We also consider the entanglement transfer between different subsystems. We find that, by applying
a controllable classical field, the trapped entanglement can be released to the waveguide, hence we can obtain
entangled photon pulses directionally. We also discuss a feasible experimental realization of our prediction.

1. Introduction

The effect of the geometric constraints on the interaction between
atomic systems and the electromagnetic field has been considered a
basic one in the study of quantum electrodynamics (QED). For Cavity-
QED [1,2], the emitter couples only to a discrete set of field modes,
which leads to the regime of strong atom–field interaction. This strong
coupling, characterized by a reversible exchange of excitation between
an atom and the mode of cavity, can lead to controllable atom–
atom entanglement [3–13] and plays a key role in many quantum
information processes [14–21]. Besides the Cavity-QED, a new area
of QED is explored in one-dimensional (1D) waveguides, where a
small number of atoms couples to an 1D continuum [22]. Nowadays,
with the development of technology, the electromagnetic field can
be confined within only 1D, and the strong coupling between 1D
waveguides and a small number of atoms has been developed [23,24].
These include photonic-crystal waveguide with embedded quantum
dots [25], optical microfibers with atoms [26], hollow core fibers [27] or
microwave transmission lines coupled to superconducting qubits [28].
These 1D systems provide a broad quantum optical properties, such
as population trapping without decay [29], giant Lamb shifts [30],
and photon scattering due to the interference of the absorbed and
directly transmitted wave [31]. These properties can be used to develop
atomic light switches [32], quantum computation [33], entanglement
production [34–36], quantum networks [37] and single-photon transis-
tors [38].
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In order to further expand the application area of the 1D system,
we study the entanglement dynamics and its potential application in
this system. We consider two classical-driven atoms, each coupled
to a single-end photonic-crystal waveguide. This single-end structure,
i.e., the semi-infinite 1D waveguide, can be regarded as an infinite
1D waveguide with a perfect mirror. We choose the semi-infinite
1D waveguide, because the fact that the photonic-crystal waveguide
is actually terminated, with the end typically lying on the junction
between the waveguide itself and the air medium, imposing a hard-
wall boundary condition on the field [25]. In such a 1D structure, the
radiation emitted by the embedded atom can be reflected back by the
mirror and hence has a significant chance to be reabsorbed by the
atom. The feedback behavior may induce the information backflow,
i.e., the non-Markovianity [39]. In this non-Markovian open system,
the time taken by the emitted photon to perform a round trip between
atom and the mirror should behave as the memory time of the system.
In this work, we highlight the effect of the memory time and the
classical driving strength on the entanglement dynamics between atoms.
It originates from the fact that the memory time, which depends on
the position of the embedded atom, can be accurately controlled in the
experiment [40]. A detailed asymptotic analysis shows that the atom–
atom entanglement is strongly related to the memory time as well as
the classical driving strength. Under control of the two ingredients,
the entanglement can be trapped in the atom–mirror interspace. And,
more remarkable, through the simple application of a classical field, the
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trapped atom–atom entanglement can be released to the waveguide as
entangled photon pulses. Finally, a possible experimental realization for
our illustrated phenomena is discussed.

This paper is organized as follows. The physical model is given in
Section 2. In Section 3, the entanglement dynamics of the two-atom
system is studied. In Section 4, we study the entanglement transfer
between different subsystems. We summarize our results in Section 5.

2. Physical model

The physical model we considered in this work is depicted in Fig. 1,
which is created in a planar photonic crystal (PC) platform [41,42].
It consists of two qubits (two-level atoms) and two 1D semi-infinite
waveguides along 𝑥-axis. The two 1D waveguides 𝑎 and 𝑏, whose end
lies at 𝑥 = 0, are coupled, respectively, to qubits 𝐴 and 𝐵 at 𝑥 = 𝑥0.
The qubits are initially entangled, and both are driven by the classical
field with frequency 𝜔𝐿. Additionally, we assume that the subsystems 𝐴𝑎
and 𝐵𝑏 are identical and no direct interactions exist between them. By
neglecting the counter-rotating terms, the Hamiltonian, for each local
subsystem reads (ℏ = 1)

𝐻 =
𝜔0
2
𝜎𝑧 +

∑

𝑘
𝜔𝑘𝑎

†
𝑘𝑎𝑘 +𝛺

(

𝑒−𝑖𝜔𝐿𝑡𝜎+ +𝐻.𝑐.
)
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𝑘
(𝑔𝑘𝑎+𝑘 𝜎− +𝐻.𝑐.), (1)

where 𝜔0 is the atomic transition frequency, 𝜎+ = 𝜎†− = |𝑒⟩ ⟨𝑔| and
𝜎𝑧 = |𝑒⟩ ⟨𝑒| − |𝑔⟩ ⟨𝑔| associated with the atomic excited state |𝑒⟩ and
ground state |𝑔⟩; 𝑎𝑘 and 𝑎†𝑘 are the annihilation and creation operators
for the 𝑘th field mode with frequency 𝜔𝑘; 𝛺 is the coupling constant
between qubit and the classical field, which is chosen to be real.

We assume that the waveguide end behaves as a perfect mirror.
Thus, part of emitted photon of the qubit will perform a round trip
between mirror and the qubit. In the case of a semi-infinite waveguide,
the photon dispersion relationship can be linearized around the qubit
frequency as [22] 𝜔𝑘 = 𝜔0 + 𝜐(𝑘 − 𝑘0), where 𝑘0 is the carrier wave
vector with 𝜔𝑘0 = 𝜔0, and 𝜐 is the photon group velocity. The coupling
strength between qubit and the 𝑘th mode can be given by [43]

𝑔𝑘 =
√

𝛤𝜐∕𝜋 sin 𝑘𝑥0, (2)

where 𝛤 is the spontaneous emission rate of the qubit. In the dressed
state basis {|+⟩ = 1

√

2
(|𝑒⟩ + |𝑔⟩) , |−⟩ = 1

√

2
(|𝑒⟩ − |𝑔⟩)}, by using two

unitary transformation 𝑈1 = exp(−𝑖𝜔𝐿𝜎𝑧𝑡∕2) and 𝑈2 = exp(−𝑖𝜔0𝜉𝑧𝑡∕2)
[44,45] to the Hamiltonian in Eq. (1), the effective Hamiltonian can be
given by

𝐻𝑒𝑓𝑓 =
𝜔𝑒𝑓

2
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where 𝜔𝑒𝑓 = 2𝛺 + 𝜔0, 𝐺𝑘 = 𝑔𝑘∕2, 𝜉+ = 𝜉†− = |+⟩ ⟨−| and 𝜉𝑧 =
|+⟩ ⟨+| − |−⟩ ⟨−|.

We assume that at time 𝑡 = 0, the qubit is in the state |+⟩ and the
waveguide in the vacuum states |

|

0̃
⟩

. The state vector of the system at
any time 𝑡, in the interaction picture, is therefore

|𝜑 (𝑡)⟩ = 𝑐+ (𝑡) |
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, (4)

where the state |

|

1̃𝑘
⟩

accounts for the field mode with frequency 𝜔𝑘
having one excitation. By using the Schrőinger equation, the equations
for the amplitudes 𝑐+ (𝑡) and 𝑐𝑘 (𝑡), can be given by
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By formal time integration of Eq. (6), and eliminating 𝑐𝑘 (𝑡) from Eq. (5),
we obtain
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is the memory kenel, i.e., the
measure of the reservoir’s memory of its previous state on the time
scale for the evolution of the atomic system. The memory kenel depends
strongly on the spectral density of the field. For our model, the spectral
density is simply proportional to the square of the atom–photon coupling
|

|

𝐺𝑘
|

|

2, and can be expressed as
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where 𝜙 = 2𝑘0𝑥0 is the optical length of twice the path between the
qubit and the mirror, and 𝑡𝑑 = 2𝑥0∕𝜐 is the finite time taken by a photon
to perform a round trip between qubit and the mirror, which behaves as
an environmental memory time [43]. Clearly, the width of the spectral
density is decided by the memory time 𝑡𝑑 , which is different from the
Lorentzian spectral density. Exploiting Eqs. (7) and (8), the amplitude
𝑐+(𝑡) can be transformed to

�̇�+ (𝑡) = −𝛤
8
𝑐+ (𝑡) + 𝛤

8
𝑐+

(
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)
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(

𝑡 − 𝑡𝑑
)

, (9)

where 𝛩 (𝑡) is the Heaviside step function. By Laplace transform, we can
obtain the Laplace transform 𝑐+(𝑠) for the amplitude 𝑐+(𝑡):

𝑐+ (𝑠) = 1
𝑠 + 𝛤

8 − 𝛤
8 𝑒

𝑖(2𝛺𝑡𝑑+𝜙)𝑒−𝑠𝑡𝑑
, (10)

By numerically solving the above equation, we can obtain the ampli-
tudes 𝑐+(𝑡).

Clearly, the open dynamics of the system is greatly influenced by
the memory time 𝑡𝑑 , the phase 𝜙 and the driving strength 𝛺, which can
be seen from the Eq. (9). When 𝑡 ≤ 𝑡𝑑 , the atom undergoes standard
spontaneous emission. After this, the presence of the mirror mainly
determines the dynamics of the system. Due to the feedback effect of
the mirror, the light emitted in the past can interfere with the light
emitted in the present, which is witnessed by the phase factor 𝑒𝑖𝜙 and
𝛺. In what follows, we study the effect of the memory time 𝑡𝑑 , the phase
𝜙 and the classical driving strength 𝛺 on the entanglement dynamics of
the two-qubit system.

3. Entanglement dynamics

The bipartite entanglement can be measured by the concur-
rence [46], which is defined as

𝐶 = max
{

√

𝜆1 −
√

𝜆2 −
√

𝜆3 −
√

𝜆4, 0
}

, (11)

where
{

𝜆𝑖
}

are the eigenvalues, in the descending order of value, of the
matrix 𝑅 = 𝜌𝐴𝐵(𝜎𝐴𝑦 ⊗ 𝜎𝐵𝑦 )𝜌

∗
𝐴𝐵(𝜎

𝐴
𝑦 ⊗ 𝜎𝐵𝑦 ), with 𝜌∗𝐴𝐵 denoting the complex

conjugate of the density matrix 𝜌𝐴𝐵 .
If the two-qubit system is initially in the entanglement state |𝛹 (0)⟩𝐴𝐵

= 𝛽|++⟩𝐴𝐵 + 𝛾|−−⟩𝐴𝐵 , and the reservoir is in the vacuum state |

|

0̃, 0̃
⟩

𝑎𝑏.
Exploiting Eq. (4), the reduced density matrix for the two-qubit system
can be calculated as (in the basis {|1⟩ = |++⟩ , |2⟩ = |+−⟩ , |3⟩ = |−+⟩ ,
|4⟩ = |−−⟩})

𝜌𝐴𝐵 (𝑡) =
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0 0 𝜌33 (𝑡) 0

𝜌41 (𝑡) 0 0 𝜌44 (𝑡)

⎞

⎟

⎟

⎟

⎟

⎠

, (12)

with the density matrix elements evolving as

𝜌11 (𝑡) = 𝛽2|
|

𝑐+(𝑡)||
4,

𝜌14 (𝑡) = 𝜌∗14 (𝑡) = 𝛾∗𝛽|
|

𝑐+(𝑡)||
2,

𝜌22 (𝑡) = 𝜌33 (𝑡) = 𝛽2|
|

𝑐+(𝑡)||
2(1 − |

|

𝑐+(𝑡)||
2),

𝜌44 (𝑡) = 1 − 𝜌11 (𝑡) − 𝜌22 (𝑡) − 𝜌33 (𝑡) . (13)

184



Download English Version:

https://daneshyari.com/en/article/7925191

Download Persian Version:

https://daneshyari.com/article/7925191

Daneshyari.com

https://daneshyari.com/en/article/7925191
https://daneshyari.com/article/7925191
https://daneshyari.com

