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a b s t r a c t

Cross-phase modulation at the single-photon level has a wide variety of fundamental applications in
quantum optics including the generation of macroscopic entangled states. Here we describe a practical
method for producing a weak cross-phase modulation at the single-photon level using metastable xenon
in a high finesse cavity. We estimate the achievable phase shift and give a brief update on the
experimental progress towards its realization. A single-photon cross-phase modulation of approximately
20 milliradians is predicted by both a straightforward perturbation theory calculation and a numerical
matrix diagonalization method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A wide variety of proposed experiments in quantum optics
make use of cross-phase modulation at the single-photon level. It
is particularly useful in the creation of Schrodinger cat states and
entangled coherent states which have applications in quantum
computing [1–3], teleportation [4–6], metrology [7], cryptography
[8], and in nonlocal interferometry [9,10]. Nonclassical effects
involving entangled coherent states are also useful for probing
the boundary between classical and quantum behavior. Coherent
states are the closest approximation to a classical state of light,
making superpositions of sufficiently orthogonal coherent states a
truly macroscopic quantum phenomenon.

Experiments to create cross-phase modulation at the single-
photon level have been performed with many different technologies
and nonlinear media. Single atoms in micro-cavities have been used
[11], as well as atomic vapor in a hollow core fiber [12], transmons at
microwave wavelengths [13], and a variety of systems using electro-
magnetically induced transparency [14–16]. Other efforts have used
quantum dots in a cavity [17] and strongly interacting Rydberg atoms
[18]. Large per photon phase shifts have been measured in many of
these systems, but they require relatively complicated experimental
setups, prompting a search for a simpler and more reliable source of
low power cross-phase modulation.

Here we discuss the feasibility of a new cavity approach for single-
photon level cross-phase modulation that uses metastable xenon
atoms as the nonlinear medium. Meta-stable xenon is expected to

be superior to alkali vapors such as rubidium and cesium since it is
inert and does not adhere to optical surfaces [19]. Xenon also has a
long metastable lifetime and relatively large dipole matrix elements
with a convenient set of ladder transitions in the near infrared. The
two level spacings are relatively close in wavelength, allowing
approximately Doppler-free experiments with counterpropagating
beams.

The use of a high finesse cavity should avoid the limitations in
using freely propagating beams that have been pointed out by
Shapiro and others based on a multi-mode analysis [20–22]. These
difficulties do not occur as long as only a single cavity resonant
frequency exists within the bandwidth of the medium.

We estimate that a single photon in the setup described here will
be able to produce a nonlinear phase shift of approximately 20
milliradians, as described in Section 2. Two different methods for
calculating the magnitude of the expected cross-phase modulation are
found to be in good agreement. One of these consists of a straightfor-
ward analytical calculation based on perturbation theory. Those results
are then verified using a numerical matrix diagonalization method
which is more appropriate for large numbers of atoms and small
detunings. In Section 3 we briefly describe the progress of an ongoing
experimental effort towards the realization of the metastable xenon
approach. Finally in Section 4 we provide a conclusion and summary
of results.

2. Theoretical model

2.1. Three-level system

The xenon transitions of interest form a three-level ladder
system as pictured in Fig. 1, where ω1 and ω2 represent the control
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and signal photon frequencies, respectively. Two-photon absorp-
tion can be minimized by detuning the signal and control photons
from atomic resonance, so that the net effect is a conditional
nonlinear phase shift. For applications involving the generation of
phase-entangled coherent states [9,10], the control at ω1 would be
a single photon while the signal at ω2 would be a weak coherent
state.

Three-level systems of this kind have previously been analyzed
using a density matrix approach [26]. Our goal here is to use a
straightforward perturbation calculation to obtain an approximate
estimate of the cross-phase modulation in metastable xenon,
which we can use to demonstrate the feasibility of the approach.

We define a set of basis states for describing the interaction in
Fig. 1 as

j1〉¼ j0〉 � jh〉
j2〉¼ â†

ω1
j0〉 � ji〉

j3〉¼ â†
ω2
j0〉 � ji〉

j4〉¼ â†
ω1
â†
ω2
j0〉 � jg〉: ð1Þ

Here â†
ωi
is the usual creation operator for angular frequency ωi and

j0〉 is the vacuum state of the field. In this basis the interaction
Hamiltonian V̂ can be defined in the usual way as [27]

V̂ ¼mn

1σ̂
†
giâω1 þmn

2σ̂
†
ihâω2 þm1σ̂giâ

†
ω1
þm2σ̂ ihâ

†
ω2

þmn

3σ̂
†
giâω2 þm3σ̂giâ

†
ω2
; ð2Þ

where σ̂gi takes the atom from ji〉 to jg〉, σ̂ ih takes the atom from jh〉
to ji〉 and the m terms are the transition matrix elements. In
general the matrix elements are given bym¼ 〈� μ!� E!〉 where μ is
the dipole moment of the transition and E

!
is the electric field, and

the brackets indicate an average over orientations.
The basis states of Eq. (1) and the interaction Hamiltonian of

Eq. (2) describe a system that can undergo several kinds of
transitions. The system may initially transition from state j4〉 to
either state j3〉 or state j2〉 by the absorption of the control (ω1) or
signal (ω2) photons respectively. A second photon may then be
absorbed to take the system from states j2〉 or j3〉 to state j1〉
[26,28]. Using Eqs. (1) and (2) the total Hamiltonian Ĥ of the
system can be written as

Ĥ ¼

ℏðωhiþωigÞ 0 mn

2 0
0 ℏðω1þωigÞ 0 mn

3

m2 0 ℏðω2þωigÞ mn

1

0 m3 m1 ℏðω1þω2Þ

0
BBBB@

1
CCCCA ð3Þ

The finite lifetimes of the excited levels are not taken into
account here in order to keep the presentation as transparent as
possible. Inclusion of the lifetimes reduces the cross-phase mod-
ulation by an amount that is not significant for detunings much
larger than the line width, as is expected to be the case in the
planned experiments. The intrinsic lifetime of the metastable
6s½3=2�2 state (approximately 43 seconds [23]) has no significant
effect on the results.

2.2. Perturbation theory

A straightforward perturbation theory approach can be used to
estimate the cross-phase shift for sufficiently large detunings. In
that limit, the nonlinear phase shift can be calculated for a single
atom and then summed over the contributions from all of the
atoms. This approach is valid as long as the depopulation of the
initial state is sufficiently small, as will be verified below using a
numerical diagonalization technique.

The level spacings and detunings are chosen in such a way that
the control photon effectively interacts only with levels jg〉 and ji〉
while the signal photon only interacts with levels ji〉 and jh〉. To
fourth order in perturbation theory, each photon is absorbed and
re-emitted once, returning the atom back to the ground state. The
assumption that only this 4th-order term is necessary to predict
the phase shift is confirmed by the numerical approach of Section 2.3,
which takes all orders into account.

The fourth order term of interest gives a change Eð4Þ in the
energy of the system given by [26]

Eð4Þ ¼ jm1j2jm2j2
ℏ3Δ2δ

: ð4Þ

The matrix elements are a function of position within the cavity,
which is assumed to contain a uniform density ρ of metastable
xenon atoms. The total phase shift from a single atom is deter-
mined by the fact that the time dependence of the state is
proportional to exp½� iEð4Þt=ℏ�, which gives a total phase shift of

ϕ¼ ρ

Z
Eð4Þt
ℏ

dV : ð5Þ

Here the integral is over the cavity volume and t is the interaction
time inside the cavity.

The integral of Eq. (5) can be simplified by making two
approximations regarding the electric field within the cavity. First
we replace the sinusoidally varying field with a suitable average,
since the field oscillates on a length scale much smaller than the
size of the cavity. This average is found by normalizing the energy
of the electric field in the cavity to that of a single photon of the
proper wavelength. Secondly we model the cavity mode field
distribution as a constant electric field over a cylinder with a
diameter equal to the gaussian beam diameter and length equal to
that of the cavity. These approximations are made only to simplify
the presentation. Numerical integration of Eq. (5) using the exact
field distribution calculated from the geometry of the cavity [29] is
in good agreement and will be discussed in Section 2.4.

The average total phase shift can now be written as

ϕ� ρVcyl
jm1j2jm2j2

ℏ4Δ2δ
t; ð6Þ

where Vcyl is the volume of the cylinder we have used to model the
cavity mode field distribution, and mi represents the matrix
element defined in Section 2.1 where the electric field has been
averaged over the cavity field distribution. In addition, the number
of atoms involved in the interaction is effectively reduced to 1=3 of
the number present in the ensemble due to averaging of the
electric field and dipole moment orientations.
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Fig. 1. Three-level system in metastable xenon used to generate cross-phase
modulation. The detunings of the control and signal (ω1 and ω2) are given by Δ

and δ respectively. The atomic levels are represented by jg〉, ji〉, and jh〉, where jg〉 is
the metastable state with an intrinsic lifetime of approximately 43 s [23]. The
transitions of interest correspond to wavelengths of 823 and 853 nm for the control
and signal respectively [24,25].
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