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a b s t r a c t

We derive the expressions of transfer function and group delay of finite coupled-resonator optical
waveguides (CROWs), using the method of coupling of modes in time, and investigate the influences of
loss on the delay line. The results show that loss can eliminate the ripples and sharp peaks in the delay
line. A Lorentzian response of the delay line gradually appears with the increase of loss, and the
bandwidth is proportional to the amplitude decay rate. Combining with coupling coefficients loss can
produce the delay line with a wide flat top where the group velocity dispersion is almost zero. We also
experimentally demonstrate this in a fiber CROW which can be utilized for rotation sensing and Mach–
Zehnder interferometers. The results can be used to design delay lines for the applications of CROWs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Coupled-resonator optical waveguides (CROWs), which can be
used in optical filters, enhanced nonlinear optical interactions, laser
amplifiers, and so on, have been attracting considerable theoretical
and experimental attentions [1–3]. Compared with conventional
waveguides, one of the most important properties of CROWs is that
they display unique and strong dispersive effects because the time
that a light wave spends in interacting with the resonators critically
depends on the detuning of the light wave from the resonant
frequency [4–6]. Thus in CROWs, one can obtain slow light which is
considered as a promising approach for the applications requiring
the control of delay, such as optical delay lines, dispersion com-
pensations, optical buffers and slow light interferometers [7–14].
However, because of the interactional inhomogeneity between
resonators around the resonant frequency, there are always ripples
and sharp peaks in the delay lines of finite CROWs, which is
detrimental for their applications. In optical communication system,
the ripples or peaks result in large group velocity dispersion (GVD)
and induce distortions and broadening of optical pulses propagating
through the finite CROWs. And in slow light interferometers the
sensitivity is proportional to group delay, so the unflatness of the
group delay line introduces tremendous instabilities which must be
avoided [14–16]. By carefully designing the coupling coefficients,
the amplitudes of the ripples or peaks can be reduced to some

degree [17], but it is hard to realize determinate coupling coeffi-
cients with a very high precision in practice, especially in the case of
the CROW consisting of a large number of resonators.

Loss is unavoidable in CROWs, and usually results from bend-
ing, absorption and scattering of the material, and coupling to
radiated fields. And loss can reduce the transmittance and quality
factors. If loss can be utilized to optimize the performance of
CROWs, this will doubtlessly boost their applications. In this letter,
we derive the expression of group delay, following the theoretical
derivations in [18], and investigate the influences of loss on the
delay line. Further, we construct a fiber CROW to demonstrate the
improvements of the delay line using loss.

2. Temporal coupled-mode equations of finite CROWs

A finite CROW consisting of N resonators is shown in Fig. 1,
where an, ωn and Rn (n¼1, 2,…,N) are the energy amplitude,
resonant frequency and radius of the nth resonator.

The stored energy of light in the nth resonators is ðjanj2Þ. Also
energy couples between resonators, and is carried away by the
reflected wave sr and transmitted wave st. Thus the energy in the
resonators leaves through three aspects: coupling to adjacent
resonators, coupling to the input/output waveguide, and loss such
as absorption and scattering loss. Then we can obtain the temporal
coupled-mode equations

d
dt
a1 ¼ � jω1�

1
τr
� 1
τl;1

� �
a1þ jμ1a2þ jμrsi;…;
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d
dt
aN�1 ¼ � jωN�1�

1
τl;N�1

� �
aN�1þ jμN�1aNþ jμN�2aN�2;

d
dt
aN ¼ � jωN�

1
τt
� 1
τl;N

� �
aNþ jμN�1aN�1þ jμtsf ; ð1Þ

sr ¼ siþ jμra1; ð2Þ

st ¼ sf þ jμtaN ; ð3Þ
where μr and μt describe the mutual coupling between resonators
and the waveguides (input and output waveguides), and μn
describe the mutual coupling between resonators, as shown in
Fig. 1. 1=τr , 1=τt , 1=τl;n are the energy amplitude decay rates due to
coupling of energy to the waveguides and loss in resonators.

μr
2 ¼ 2

τr
¼ kr

2 c
2πR1ne

; μt
2 ¼ 2

τt
¼ kt

2 c
2πRNne

;

μn
2 ¼ kn

2 c2

ð2πneÞ2RnRnþ1
;

1
τl;n

¼ ð1�α2Þ c
2πRnne

; ð4Þ

where kr , kt , kn are the coupling coefficients, ne is the effective
index, and α is the attenuation coefficient per circulation in
resonators. When si is a steady-state signal (si � expð� jωtÞ) and
there is no feedback (sf ¼ 0), we solve Eq. (1) and then have

a1 ¼ jμr si
Γ1

; aN ¼ ðjÞNμ1μ2 U U UμN� 1μr si

∏
N

n ¼ 1
Γn

;

Γn ¼Δnþ μn
2

Δnþ1þðμnþ1
2=ðΔnþ2 U U UþμN�1

2=ΔNÞÞ
;

Δ1 ¼ � jΔω1þ
1
τl;1

þ 1
τr
;

Δn ¼ � jΔωnþ 1
τl;n

; ΔN ¼ � jΔωNþ
1
τl;N

þ 1
τt
: ð5Þ

Δωn ¼ω�ωn is the frequency detuning. The transfer function
and group delay can be derived from Eqs. (3) and (5), and are given
by

T ¼ st
si
¼ ðjÞNþ1μ1μ2 U U UμN�1μrμt

∏
N

n ¼ 1
Γn

; ð6Þ

tg ¼
∂argðTÞ
∂ω

: ð7Þ

From Eqs. (6) and (7) it can be seen that the group delay is very
sensitive to the frequency of input light and coupling coefficients,
so flat spectra of group delay are hardly to be achieved without a
very precise control of the coupling coefficients, especially in the
case of the CROW consisting of a large number of resonators. Note
that Eqs. (6) and (7) can also be used to analyze the filter response
of finite CROWs.

Here, we assume that the resonators have the same attenuation
coefficient and the same size (Rn ¼ R), making that 1=τl;n ¼ 1=τl
and Δωn ¼Δω. It is interesting that when the loss is large

(1=τlcμn; 1=τr ; 1=τt) we have

tg ¼N
1=τl

Δω2þð1=τlÞ2
: ð8Þ

Thus, the group delay is proportional to the number of
resonators N, but the bandwidth of the group delay line is
independent of N. The delay line shows a Lorentzian response,
and the full width at half-maximum (FWHM) is 2=τl.

3. Results and discussions

From Eqs. (5)–(7) we can see that the interactional inhomo-
geneity between resonators can make the delay lines of finite
CROWs rippled around the resonant frequency. And the interac-
tional inhomogeneity more easily happens as the increase of the
number of resonators composing the finite CROW. Fortunately,
loss can reduce the interactional inhomogeneity and further make
the delay line not so sensitive to the light frequency and coupling
coefficients. Fig. 2 shows the influences of loss on the delay lines
and GVD of CROWs consisting of two resonators and four resona-
tors. When there is no loss ðα¼ 1Þ, the ripples in the delay lines are
apparent and there are sharp peaks in the delay line of the CROW
consisting of four resonators. Meanwhile, the GVD is large and also
rippled. As the loss increases gradually, the ripples and peaks in
the group delay lines are finally eliminated and wide flat tops
without GVD (blue lines in Fig. 2) emerge. When the loss is large,
the Lorentzian responses of the delay lines appear. Moreover, the
loss reduces the time light spends in circulating within each
resonator, so the largest delay decreases with the increase of loss.

We also experimentally obtain a delay line with a wide flat top
in a fiber coupled-resonator optical waveguide (FCROW), which
can be utilized for rotation sensing and Mach–Zehnder interfe-
rometers [14–16]. The experimental setup is schematically shown
in Fig. 3. The intensity modulator (IM) is used to modulate the
laser into Gaussian-shaped pulse whose FWHM is about 50 ns.
The polarization controller (PC) is adjusted to excite one of the
eigenpolarizations of light in the FCROW. The FCROW which we
use in the experiment consists of two fiber ring resonators and the
circumference of each resonator is about 50 cm. Meanwhile the
3 dB splitter is used to divide the modulated optical field into two
parts: one part is taken as a reference light and the other a signal
light. The reference light and signal light are detected by detectors
D1 and D2. Therefore, the pulse delay can be measured by
comparing the reference light and signal light. The FCROW is
immersed in a water box to limit thermal fluctuations.

Fig. 4 shows the experimental results of group delay and
transmittance in the FCROW. In the experiment the frequency
intervals between experimental points are judged by the trans-
mittance and tuning quantity of laser frequency. The experimental
errors are mainly caused by two factors: (1) the slight fluctuations
of water temperature and laser frequency, and (2) small deviations
of the parameters in the experiment from those in the theoretical

Fig. 1. Wave propagation model in a finite CROW. si and sf are the incident and feedback waves, and sr and st are the reflected and transmitted waves. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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