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a  b  s  t  r  a  c  t

Pulsed  electromagnetic  (EM)  radiation  from  a  traveling-current  plasmonic-wire  segment  is  studied  ana-
lytically  using  the  unilateral  Laplace-transform  technique.  This  approach  yields  closed-form  expressions
that can  be readily  evaluated  for given  configurational  and excitation  parameters,  thereby  revealing
physical  insight  into  the  time-domain  (TD)  EM radiation  behavior  of  a plasmonic  nanowire.  Illustrative
numerical  examples  concerning  pulsed  EM  fields  radiated  from  a  gold  nanowire  are  given and  discussed.

© 2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Antennas capable of efficiently operating with optical wave
fields show a lot of promise because of their applications in THz and
photonic devices [1,2] and plasmonic biosensors [3], for example.

Notwithstanding the applicability of some general-purpose
numerical EM solvers (see e.g. [4]), the still increasing complex-
ity of plasmonic structures has necessitated the development of
dedicated (and more efficient) numerical methodologies [5–7]. As
to the corresponding TD (i.e. space–time) modeling, this category
is (almost) exclusively limited to the finite-difference time-domain
(FDTD) technique (see [8] and [9, Ch. 4], for example). Although the
FDTD technique is a well-established tool for engineering practice,
its purely numerical outcomes can hardly be sufficient to fully
grasp all peculiarities of plasmonic phenomena. The latter can be
best addressed by solving canonical problems such as the excita-
tion of surface plasmon polaritons at planar interfaces [10, Ch. 2].
Despite the fact that all physical phenomena manifest themselves
in space–time, only a few initial attempts to describe plasmonic
effects analytically in TD do exist so far (see [11–14], for example).

Except for the observation that the skin depth cannot be
neglected anymore [15], analytical models characterizing
frequency-domain (FD) EM scattering from optical plasmonic
nanowires (see [16], for example) rely largely on the classic FD
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theory of straight-wire antennas [17]. To the best of our knowl-
edge, there is presently no study available that analyzes the pulsed
EM radiation from a plasmonic nanowire analytically. Filling this
void is hence the main purpose of this work.

This paper follows in part the methodology based on the uni-
lateral Laplace transformation that has been successfully applied
to analyzing a relaxation-free traveling-current straight-wire seg-
ment in TD [18]. Here it is demonstrated that such a methodology
is also applicable to describing the pulsed EM radiation from a
current pulse traveling along a plasmonic nanowire. Indeed, it is
shown that the pulsed EM radiation characteristics of such a radi-
ating segment can be expressed as the superposition of the EM
radiation characteristics pertaining to the corresponding electri-
cally perfectly-conducting (PEC) wire and the (Boltzmann-type)
relaxation part describing its plasmonic behavior.

For an earlier work on pulsed EM radiation from a traveling-
wave PEC antenna we refer the reader to [19]. Finally, a somewhat
more general TD approach accounting for the complete space–time
electric-current distribution along a thin PEC wire can be found in
[20].

2. Problem definition

The plasmonic nanowire under consideration is shown in
Fig. 1. The wire is placed in the unbounded, homogeneous and
isotropic embedding of permittivity �0 and permeability �0.
The corresponding EM wave speed is c0 = (�0�0)−1/2 > 0 and
�0 = (�0/�0)1/2 > 0 is the free-space impedance. The EM properties
of the wire itself are described by the radial plasma frequency
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Fig. 1. Problem configuration.

ωp and the collision frequency �c via the conduction relaxation
function (see [21, Section 19.5] and [11])

�(t) = �0ω2
p exp(−�ct)H(t) (1)

in which H(t) is the Heaviside unit-step function. Finally, the wire
length is denoted by �.

The wire segment is at z = 0 and t = 0 excited by an electric-
current pulse I(t) that travels along the segment’s axis. We  assume
that I(t) = 0 for t < 0 along with the zero initial conditions for all
EM fields throughout the problem configuration. Similarly to [19],
we shall primarily limit ourselves to describing pulsed EM radi-
ation of the electric-current pulse as it traverses the plasmonic
segment from z = 0 to z =�. Beyond this limitation, reflections at the
antenna end points have to be properly accounted for. This fact is
demonstrated on a numerical example given in Section 5. The spa-
tial point where the pulsed EM radiation is observed is specified by
the radial, azimuthal and axial coordinates {r, 	, z}, respectively,
with respect to the Cartesian reference frame with the origin O.
The time coordinate is t. Partial differentiations are denoted by ∂
with the corresponding subscript. The time-integration and time-
convolution operators are denoted by ∂−1

t and *, respectively.

3. Radiated-field source-type representations

Owing to the rotational symmetry of the plasmonic-wire con-
figuration, the non-zero EM-field components are 	-independent
and can be expressed through (cf. [21, Section 26.4])

Er(r, z, t) = �−1
0 ∂−1

t ∂r∂zAz(r, z, t) (2)

Ez(r, z, t) = −�0∂tAz(r, z, t) + �−1
0 ∂−1

t ∂2
z Az(r, z, t) (3)

H	(r, z, t) = −∂rAz(r, z, t) (4)

in which Az can be, symbolically, cast into the following form (cf.
[18, Eq. (3)])

Az(r, z, t) = I(t) ∗ �(r, z, t) (5)

where we have assumed the thin-wire approximation and (the
complex-frequency-domain counterpart of) �(r, z, t) will be speci-
fied below. Under a unilateral Laplace transformation

Âz(r, z, s) =
∫ ∞

t=0

exp(−st)Az(r, z, t)dt (6)

with the complex-frequency parameter {s ∈ C; Re(s) > 0}, Eq. (5)
can be transformed as follows:

Âz(r, z, s) = Î(s)�̂(r, z, s)

= Î(s)

∫ �

�=0

exp
[
−sR(�)/c0

]
/4
R(�)

exp
{

−
[
s2 +

[
s/(s + �c)

]
ω2

p

]1/2
�/c0

}
d� (7)

with R(�) = [r2 + (z − �)2]
1/2

. In Eq. (7) we  may distinguish
between the propagation factors exp(−sR/c0) and exp(− �̂�) with
� ∈ (0, �) pertaining to the wave propagation in the embedding
and along the wire segment itself, respectively. In accordance with
Eq. (1), the propagation coefficient corresponding to the plasmonic

wire can be found as �̂ = {s2 + [s/(s + �c)]ω2
p}1/2

/c0 (see [21, Eqs.
(24.4-13), (24.4-14) and (26.2-3)]). Upon expanding R(�) about

R(0) = (r2 + z2)
1/2 → ∞ we  arrive at the following far-field approx-

imation

Âz(r, z, s) = Â∞
z (�, s) exp

[
−sR(0)/c0

]
/4
R(0)

{
1 + O[R−1(0)]

}
(8)

in which

Â∞
z (�, s) = Î(s)

∫ �

�=0

exp
[
s� cos(�)/c0

]

exp
{

−[s2 + [s/(s + �c)]ω2
p]

1/2
�/c0

}
d� (9)

Along these lines, the transient EM radiation characteristics can
be then expressed using the TD counterpart of (9) with (2)–(4) as
follows:

E∞
r (�, t) = �0∂tA

∞
z (�, t) sin(�) cos(�) (10)

E∞
z (�, t) = −�0∂tA

∞
z (�, t)sin2(�) (11)

H∞
	 (�, t) = c−1

0 ∂tA
∞
z (�, t) sin(�) (12)

with (cf. Eq. (8))

Er(r, z, t) = E∞
r

[
�, t − R(0)/c0

]
/4
R(0){1 + O[R−1(0)]} (13)

R(0) → ∞,  for example. Finally note that the �-component of the
electric-type radiation characteristic directly follows as

E∞
� (�, t) = �0∂tA

∞
z (�, t) sin(�) (14)

which gives E∞
�

/H∞
	

= �0 for all t > 0 and {0 < � ≤ 
}.  From Eqs.
(10)–(12) and (14) it is clear that the transient radiation character-
istics of the analyzed plasmonic wire are proportional to ∂tA∞

z (�, t).
Accordingly, the main subject of the following section is to find (the
time-derivative of) the TD counterpart of Eq. (9).

4. Pulsed EM radiation characteristics

Owing to the availability of low-loss plasmonic materials such
as gold or silver (see e.g. [22]), we will, in the first approximation,
limit ourselves to the collision-free case by taking the limit �c ↓ 0. In
this case, the solution is attainable in terms of standard functions.
After some straightforward steps we  end up with

A∞
z (�, t) = A∞;PEC

z (�, t) − c0ωp

[1 − cos(�)]2
I(t)

∗
∫ min[t,T(�)]

�=0

J1

{
ωp[t − �]1/2[t + q(�)�]1/2

}
�d�

[t − �]1/2[t + q(�)�]1/2
(15)

where T(�) = (�/c0)[1 − cos(�)], q(�) = [1 + cos(�)]/[1 − cos(�)], J1(x) is
the Bessel function of the first kind and of the first order and A∞;PEC

z
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