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H I G H L I G H T S

� Interaction between moving two atoms and nonlinear optical field (deformed field).
� Entanglement using concurrence and negativity measures for a class of special cases of a two-qubit system.
� Entanglement sudden death (ESD) and entanglement sudden birth (ESB).
� Effects of the different parameters on the entanglement measures.
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a b s t r a c t

We present a new kind of interaction between two two-level atoms and optical field initially in deformed
bosonic coherent states. Using the concurrence and negativity as measures of entanglement, we
investigate the nonlocal correlation between atom–atom and atom–field in terms of the parameters
involved in the whole system. We report some important results related to this new kind of interaction
such as sudden death, sudden birth, and entanglement stabilization.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Entanglement is some kind of correlations between two or
more quantum systems [1]. The nonlocal nature of entanglement
has also been identified as an essential resource for many novel
tasks in quantum information processing such as quantum tele-
portation [2], superdense coding [3], quantum cryptography [4,5]
and quantum metrology [6]. These quantum-information tasks
cannot be carried out by classical resources and they rely on
entangled states. This recognition led to an intensive search for
mathematical tools that would enable a proper quantification of

this resource. In particular, it is of primary importance to test
whether a given quantum state is separable or entangled.

Different entanglement measures and quantifiers have been used
for the pure and mixed states such as concurrence [6,7], entanglement
of formation [8], negativity [9,10] and Fisher information [11–13]. In
this way, the concurrence and negativity are used as good entangle-
ment measures for a mixed state, the von Neumann entropy has been
proposed for pure state entanglement [14], all these measures are
used to test whether a given quantum state is separable or entangled.
Also, some interesting physical phenomena are observed as a result of
entanglement measure, such as entanglement sudden death (ESD)
and entanglement sudden birth (ESB) [15].

Over the last two decades much attention has been focused on the
properties of the Jaynes Cummings model (JCM) for moving an atom.
Some theoretical efforts have been stimulated by experimental pro-
gress in cavity QED. In addition to the experimental drive, there also
exists a theoretical motivation to include the atomic motion effect to
JCM because its dynamics become more interesting. Considering the
motion of the atoms, the TJCM model with two moving atoms has
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been investigated [16] and the authors have shown that the ESD and
ESB [17] have also been experimentally observed for entangled photon
pairs [18] and the atom ensembles [19], in addition the entanglement
of two moving atoms interacting with a single-mode field via a three-
photon process is also investigated [20].

Quantum groups (QGs) have been introduced as a natural
extension of the notion of coherent states and interpreted as
nonlinear harmonic oscillators with a very specific type of the
linearity [21,22]. A q-deformed harmonic oscillator was defined in
terms of q-boson annihilation and creation operators, the latter
satisfying the quantum Heisenberg–Weyl algebra [23] which plays
an important role in QG. The deformed coherent states have been
used to describe a large class of quantum systems prepared from
several potentials (by a proper choice of the q-deformed para-
meter) such as infinite, modified Pöschl–Teller, Morse potentials
[24] and from the finite range potentials [25].

Over the last two decades, there have been several experimental
demonstrations of nonclassical effects. Some important physical con-
cepts of corresponding coherent states exhibit many nonclassical
properties such as photon antibunching, sub-Poissonian photon
statistics and squeezing (for a review see Ref. [26]). It has been
experimentally observed that the real laser, bunched and antibunched
light possesses a photon number statistics which can be super-
Poissonian or sub-Poissonian. The physical importance of the
deformed coherent states lies in the fact that they offer the best
description for non-ideal physical devices such as lasers [27] (i.e. real
lasers). The deformation parameter plays then the role of a tuning
parameter defining how far the realized device is from the ideal one.

Here, we are going to investigate the interaction between two
identical or symmetric two-level atom and nonlinear deformed
field in the rotating wave approximation. We examine the effects
of the deformation and atomic motion parameter on the dynami-
cal properties of the von Neumann entropy and concurrence. Our
main goal in this case is to answer the question “Do these
parameters have a real effect on the entanglement between two
atoms and nonlinear deformed field?”

The paper is organized as follows: in Section 2, we present the
model of the nonlinear deformed field and moving two atoms and
calculate the atomic density matrix. In Section 3, we present the
numerical results and discuss the different effects on the dynamics of
the system entanglement. Finally, we summarize the main results in
Section 4.

2. Model and its dynamics

In this section, we consider the model of the interaction between a
nonlinear deformed field F and symmetric moving two two-level
atoms A, B with energy levels denoted by jþ 〉j and j�〉j, where j� 〉 is
the lower level and jþ〉 is the upper level of jth two-level atom i.e.
j¼A, B atom. The interaction Hamiltonian Ĥ I of the system in the
rotating-wave approximation (RWA) can be written as

Ĥ I ¼ gðtÞ ∑
2

j ¼ 1
ðâqŜ

ðjÞ
� þ âqŜ

ðjÞ
þ Þ; ℏ¼ 1 ð1Þ

where âq (â†
q) is the annihilation (creation) operator of the deformed

field mode. The operators Ŝ
ðjÞ
þ ðŜ

ðjÞ
� Þ and Ŝ

ðjÞ
z are the usual raising

(lowering) and inversion operators for jth two-level atom, respectively.
We deal with the one-dimensional case of atomic motion of the

cavity axis and denote by g(t) the shape function of the cavity field
mode [28,29]. A realization of particular interest is gðtÞ ¼ ðpπvt=LÞ
in the presence of atomic motion i.e. pa0, and gðtÞ ¼ λ in the
absence of atomic motion pa0, where v denotes the atomic
motion velocity and p stands for the number of half wavelengths
of the mode in the cavity. We restrict our study for the atomic

motion for the cavity length L along the z-direction. Also, we
consider the atomic motion velocity as v¼ λL=π which leads to

g1ðtÞ ¼
Z t

0
gðτÞ dτ¼

1
p
½1� cos ðpλtÞ� for pa0

λt for p¼ 0

8><
>: ð2Þ

Now, let us assume that the two atoms are initially in the upper
state (i.e. θ¼ 0) and maximally entangled quantum state or Bell
state (i.e. θ¼ π=4). While the field in the deformed bosonic
coherent states jα〉q
jΨ ABF ð0Þ〉¼ ð cos θjþ ; þ 〉þ sin θj� ; � 〉Þ � jα〉q; ð3Þ
here jα〉q is the deformed bosonic coherent states are coherent
states that are constructed using a formally analogous scheme as
the one allowing the construction of the Glauber coherent
states starting from the Heisenberg–Weyl algebra. These states
are defined as the eigenstate of the annihilation operator of a
q-deformed bosonic field âq

jα〉q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expq½α2�

q ∑
1

n ¼ 0

αnffiffiffiffiffiffiffiffiffi½n�q!
p jn〉; ð4Þ

where, we have considered qAR, and the deformed expq is
defined as

expq½x� ¼ ∑
1

n ¼ 0

xn

½n�q!
: ð5Þ

The function expq is a deformation version of the usual exponen-
tial function. They become coincident when q is the identity.
Notice that expq½x�expq½y�aexpq½xþy� and ½expq½x��aaexpq½ax�,
i.e. we have a non-extensive exponential which can be found in
many physical problems [31,32].

In this paper we assume that the deformation can be achieved
using the following function [30]:

½n�q ¼
qn�q�n

q�q�1 ; ð6Þ

and the q-factorial is defined as

½n�q!¼ ½n�q½n�1�q � � � ½1�q; ½0�q!¼ 1: ð7Þ
The wave function jΨ ðtÞ〉 at any time t40 takes the form

jΨ ðtÞ〉¼ ∑
1

n ¼ 0
ψ1ðn; tÞjþ ; þ 〉jn〉þψ2ðn; tÞjþ ; � 〉jnþ1〉

þψ3ðn; tÞj� ; þ 〉jnþ1〉þψ4ðn; tÞj� ; � 〉jnþ2〉: ð8Þ
The coefficients ψ jðn; tÞ, j¼1,2,3,4, are obtained from solving

the Schrödinger equation (iℏ∂jΨ ðtÞ〉=∂t ¼ Ĥ IjΨ ðtÞ〉), where Ĥ I is
given by Eq. (1). The explicit expressions for these coefficients in
the classical limit q-1 are given by

ψ1ðn; tÞ ¼
Qn

n!ðnþ2Þ!þ½ðnþ1Þ!�2 cos θ½n!ðnþ2Þ�

þ½ðnþ1Þ!�2 cos ðgðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nþ6

p
Þ�

þðnþ1Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ2Þ!

p
sin θ½ cos ðgðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nþ6

p
Þ�1��;

ψ2ðn; tÞ ¼ψ3ðn; tÞ
¼ � iQnffiffiffiffiffiffiffiffiffiffiffiffiffi

4nþ6
p sin ðgðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nþ6

p
Þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ1

p
cos θþ

ffiffiffiffiffiffiffiffiffiffiffi
nþ2

p
sin θ

n o
;

ψ4ðn; tÞ ¼
Qn

n!ðnþ2Þ!þ½ðnþ1Þ!�2 sin θ½n!ðnþ2Þ! cos ðgðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nþ6

p
Þ

n

þ½ðnþ1Þ!�2�
þðnþ1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ2Þ!

p
cos θ½ cos ðgðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nþ6

p
Þ�1��:

The atomic density matrix ρ̂ABðtÞ can be written as follows:

ρ̂ABðtÞ ¼ TrF ðjΨ ðtÞ〉〈Ψ ðtÞjÞ; ð9Þ
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