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A B S T R A C T

In this study, we show that design optimization of solar cells can be accelerated using neural networks (NN)
effectively. We consider an organic thin film solar cell consisting of a poly(3-hexylthiophene):(6,6)-phenyl-C61-
butyric-acid-methyl ester (P3HT:PCBM) absorber, an antireflective indium tin oxide (ITO) layer and an alu-
minum back reflector layer. Zinc oxide (ZnO) and molybdenum trioxide (MoO3) interlayers are also used as
electron and hole transfer layers. Silver nanotextures are embedded within absorber layer to create near field
effects thus enhancing optical absorption. Optical properties of structures at sub-wavelength scales are measured
by numerically solving first principle electromagnetic equations, e.g., by means of finite difference time domain
and finite element methods. These methods are time-consuming, and therefore limit the possibility of exhaustive
optimization. Surrogate modeling can be used to overcome this challenge. In the present work, we design a two-
layer NN surrogate model to estimate the optical absorptivity of the cell for any given geometry vector as well as
any radiation wavelength. After the preliminary optimization which utilizes NN, the result of optimization is
obtained within narrowed optimization bounds obtained from the results of surrogate based optimization. A
325% of enhancement in absorption is obtained as a result of optimization.

1. Introduction

Organic solar cells (OSC) have attracted considerable attention as
promising third generation photovoltaic devices due to ease of fabri-
cation, inexpensive power generation and mechanical flexibility (Ameri
et al., 2009; Gunes et al., 2007; Krebs, 2009) . However, power con-
version efficiency of OSCs could only reach up to 11.5% as of 2015
(“Best Research-Cell Efficiencies,” n.d.), which is significantly lower
than inorganic counterparts. One of the methods to improve the effi-
ciency is optical absorptivity enhancement by light trapping techniques
(Atwater and Polman, 2010; Ferry et al., 2010; N’Konou et al., 2017).
Light can be trapped inside the absorber layer of the solar cell by using
an antireflective coating, metal back reflector and nanotexturing. The
first option reduces the reflection while the rest creates near field effects
and multiple scattering. Absorption enhancement in solar cells via
plasmonic nanotextures has been the subject of extensive review in the
nanotechnology field in the last decade (Enrichi et al., 2018). The re-
search has led us to several design guidelines. In general, the size, shape
and location of metallic nanostructures play important roles in ab-
sorption enhancement (Atwater and Polman, 2010; N’Konou et al.,
2017), and poor designs can cause even decreased absorption (Shen
et al., 2009; Vedraine et al., 2011; Zhu et al., 2014). Furthermore,

optical modeling of solar cells at nanoscale should be accompanied by
powerful algorithms for a complete design optimization (Hajimirza
et al., 2012; Hajimirza and Howell, 2012, 2015, 2013a, 2013b).

Optical modeling of thin film solar cells requires solving Maxwell’s
electromagnetic equations which are a set of partial derivative equa-
tions of electric, magnetic and displacement fields. Except for a limited
number of circumstances, Maxwell’s equations are solved using com-
putational tools, such as Finite Difference Time Domain (FDTD), Finite
Element Method (FEM) and Fourier Modal Method (FMM). These tools
are computationally expensive, thus they are more suitable to be used
in the parametric studies where only a few parameters are optimized,
rather than a simulation-based optimization of a full set of design
variables.

Simulation-based optimization problems are not limited to the
present study, and address a wide range of engineering fields (Golovin
et al., 2017). Some examples are computational fluid dynamics (CFD)
analysis, structural analysis (FEM) and electromagnetic simulations
(FDTD, FEM,…), etc. The common practice to perform these simula-
tions is utilization of commercial software packages which are con-
ceptually a black-box taking input vector and returning a set of desired
outputs. Surrogate-based optimization methods are developed for re-
ducing computational cost of simulation-based optimization problems.
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These methods engage powerful optimization algorithms with the ap-
proximate alternatives for the high fidelity functions (Nguyen et al.,
2014; Queipo et al., 2005; Rios and Sahinidis, 2013). There are various
surrogate modeling techniques, such as polynomial regression, Gaus-
sian process and neural networks. Among these methods, neural net-
works (NN) have the ability of approximating almost every function
regardless of the degree of nonlinearity (Hagan et al., 2014). In recent
years, NN has been very popular in solving engineering related pro-
blems such as geographic information systems (Pijanowski et al., 2014),
meteorology (Jang et al., 2004), groundwater management (Dash et al.,
2010), predicting physical properties of nanofluids (Heidari et al.,
2016) and more. However, these models, and more broadly any parti-
cular surrogate modeling has never been used to model absorptivity of a
solar cell based on its geometry for optimization.

Optimal design of plasmonic OSC devices has recently been studied
by several researchers. Shen et al. (2009) conducted a systematic study
to maximize absorption enhancement of a PEDOT:PSS/P3HT:PCBM/Al
solar cell where Ag nanospheres are embedded inside the absorber
layer. The authors studied the influence of the particle diameter and the
distance between the particles on the absorption enhancement.
Vedraine et al. (2011) also performed a detailed parametric study of the
effect of Ag nanospheres on the optical absorption and obtained ab-
sorption enhancement factors up to 3. Fallahpour et al. (2015) con-
ducted an optimization study based on a coupled optical-electrical
analysis. A 17% of improvement was obtained in power conversion
efficiency as a result of optimization. However, in all these studies, only
a few design variables were optimized, and a complete OSC optimiza-
tion is lacking. Furthermore, the hybrid optimization methodology used
in this paper has never been used before to the best of our knowledge.

The rest of the paper is organized as follows: The physical model of
OSC is presented in the next section. The details of the mathematical
methods are given in Section 3 and the results are presented and dis-
cussed in Section 4.

2. Physical model

In general, a solar cell consists of an absorber, an antireflective
coating and a back metal contact. It is also very common to use electron
and hole transport layers (ETL and HTL). ZnO is mostly used as ETL due
to its favorable optoelectronic properties (Beek et al., 2004, 2005; Ullah
et al., 2017) and MoO3 is a stable hole selective contact with nontoxic
nature (Stubhan et al., 2015). The schematics of the solar cell structure
used in the present study are shown in Fig. 1. In this design, the widely
used organic bulk heterojunction blend P3HT:PCBM is preferred in the
absorber layer, aluminum is selected as the cathode due to its low work
function (Notarianni et al., 2014) and OSC is coated with anti-reflective
indium tin oxide (ITO). Electron and hole transport layers, ZnO and
MoO3 are also included in the design to be optimized (Ou et al., 2016;
Ullah et al., 2017).

Generally, optical efficiency enhancement of the solar cells is ac-
complished by improving radiation absorption. One way to improve
absorption is to increase the physical thickness of the solar cell.
However, that results in increased probability of recombination when
the absorber thickness is larger than the collection length, therefore
defying the original purpose of solar to electricity conversion of the cell.
One way to enhance the optical performance without causing re-
combination is utilization of plasmon polaritons by metallic nanos-
tructures. For this purpose, Ag nanostructures are embedded in the
absorber layer. The nanostructures are located near MoO3 because the
absorption enhancement in a solar cell is shown in the literature (see
e.g., Vedraine et al., 2011) to be larger when plasmonic nanostructures
are placed away from the interface where light enters (back zone). Ag
nanotextures have elliptical shapes. A 2D surface texture is aimed to be
modeled with two diameters for the elliptical nano-textures. However,
the same design can easily be extended to 3D by only adding more input
variables, namely ellipsoid diameter and spacing variables in the z

direction. Distance between nanostructures and ZnO layer is taken as a
design variable instead of the overall thickness of P3HT:PCBM, in order
to avoid a possible short-circuit. The improvement due to the presence
of silver nanostructures can be quantified by absorption enhancement
factor (EF). This is defined as the ratio of the number of photons ab-
sorbed by the absorber layer when the nanostructures are embedded, to
the number photons absorbed by the bare solar cell. Namely:

∫ ∫= ⎡⎣ ⎤⎦⎡⎣ ⎤⎦
−

EF λα λ I λ dλ λα λ I λ dλ( ) ( ) ( ) ( ) ,p b
1

(1)

where αj is the portion of absorbed power when unit power light is
propagated through the solar cell where =j p for the plasmonic and

=j b for the bare solar cell. I λ( ) is the AM1.5 standard solar spectrum
(“American Society for Testing and Materials, 2003, ‘ASTM Standard
Tables for Reference Solar Spectral Irradiances,’” n.d.). The integration
is over the entire wavelength range of solar spectrum. In this study, the
bare solar cell consists of aluminum, P3HT:PCBM and ITO layers and
glass substrate (see Fig. 1).

The optimal size and configuration of silver nanostructures and the
optimal layer thicknesses are sought in order to maximize EF. As un-
derlined in the previous section, the absorbed power inside thin film
solar cells can be calculated by solving Maxwell’s equations. FDTD is
one of the computational methods for solving Maxwell’s equations on a
discrete spatial and temporal grid called Yee’s cells. For the present
study, we have used FDTD Solutions software provided by Lumerical
Inc. (“Lumerical Inc.,” n.d.). Automatic mesh option of the software is
used (mesh accuracy: 5, provided by software). Additionally, the mesh
on the nanostructure is overwritten with a mesh size of 0.4 nm as a
result of an extensive mesh independence study (not included here for
the sake of brevity). The time step used in the simulations is

× −0.53 10 fs4 .
The material properties used in FDTD simulations are taken from

literature (Hajimirza and Howell, 2014; Oueslati and Messaoud, 2015;
Palik, 1998; Rand et al., 2004; Shen et al., 2009; Vos et al., 2016) and
presented in Fig. 2.

3. Neural network based optimization

3.1. Neural network model of optical absorption

NN consists of artificial neurons which map the input space to the
output space by means of coefficients and transfer functions in various
layers. There may be multiple neurons in each layer, but the number of
neurons in the first and last layers must equal to the number of input
and outputs, respectively. NN has the capability of approximating al-
most every function regardless of the degree of nonlinearity (Foresee
and Hagan, 1997; Hagan et al., 2014). NN represents the relationship
between input and output as a series of functions evaluated at the ar-
tificial neurons. The output of the NN model is

= ∀ ⩽ ⩽ =− λy f W y 1 i L y t t t t t d d s 1( ) , , [ , , , , , , , , , ]i i i i 1 0 1 2 3 4 5 1 2
T (2)

where yi is the normalized output vector andWi is the coefficient matrix
of the ith layer, and L is the number of layers. y0 is the input vector
normalized to within the [−1 1] range through the transformation .
The output is then renormalized to [0 1] to obtain NN absorptivity,

=α f λx( , )NN NN , where x= [t1, t2, t3, t4, t5, d1, d2, s, 1]T. The last term of
the input vector is 1 due to bias term in coefficient matrix.Wi is found as
a result of NN training by minimizing the training cost function, C v( ):

= +C βSSE αSSWv( ) (3)

where =SSE e eT is the sum of squared error between NN output and
target and =SSW v vT is the Bayesian regularization term where v is the
vector concatenation version of coefficient matrices. SSW is a penalty
term to avoid large coefficients which results in overfitting. α and β are
regularization parameters set iteratively.

NN training is done using Levenberg-Marquardt (LM) method with
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