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a b s t r a c t

In this paper, we study the variable-coefficient Lenells-Fokas (LF) model. Under large pe-
riodic modulations in the variable coefficients of the LF model, the generalized Akhmediev
breathers develop into the breather multiple births (BMBs) from which we obtain the
Peregrine combs (PCs). The PCs can be considered as the limiting case of the BMBs and be
transformed into the Peregrine walls (PWs) with a specific amplitude of periodic modu-
lation. We further investigate the spatiotemporal characteristics of the PCs and PWs
analytically. Based on the second-order breather and rogue-wave solutions, we derive the
corresponding higher-order structures (higher-order PCs and PWs) under proper periodic
modulations. What is particularly noteworthy is that the second-order PC can be converted
into the Peregrine pyramid which exhibits the higher amplitude and thickness. Our results
could be helpful for the design of experiments in the optical fiber communications.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As one type of nonlinear waves, breathers have recently drawnmuch attention since they could be considered as potential
prototypes for the rogue waves (RWs) in the ocean [1e9] and other fields of physics [10e12]. Breathers develop owing to the
instability of small amplitude perturbations that may grow in size to disastrous proportions [13]. Generally speaking, there
are two kinds of breathers, namely, the Kuznetsov-Ma breathers (KMBs) that are periodic in space and localized in time [14]
and Akhmediev breathers (ABs) that are periodic in time and localized in space [15]. When the period of the breathers tends
to infinity, the Peregrine soliton (PS) localized both in time and space is formed, which could be used as the mathematical
description of RW [16e19]. RWs also appear in various fields, including the oceanography [18], nonlinear fiber optics [20e24],
Bose� Einstein condensates [25e27], atmospheric dynamics [28], plasma [29], laser� plasma interactions [30], and even
finance [31], to name a few. They are the localized structures with the instability and unpredictability [32,33], and are short
lived and particularly rare walls with devastating effects. The RWs have a peak amplitude generally more than twice the
significant wave height and are considered to be waves appearing from nowhere and disappearing without a trace [33].

In optical communications, there always exist some nonuniformities due to various factors, which include the imper-
fection of manufacture, variation in the lattice parameters of the fiber media and fluctuation of the fiber diameters [34]. Those
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nonuniformities often lead to such effects as the fiber gain or loss, phase modulation, and variable dispersion [35]. The in-
clusion of the variable coefficients into the nonlinear Schr€odinger (NLS) equations is currently an effective way to reflect the
inhomogeneous effects of the nonlinear optical pulses [36]. Compared to the nonlinear waves in constant-coefficient models,
the breathers and RWs with variable coefficients often show many novel properties such as the nonlinear tunneling effect,
breather evolution, amplification, and compression, Talbot-like effects, and composite rogue-wave structures [37e40]. In
particular, Tiofack et al. have recently investigated the Peregrine comb (PC) generation using multiple compression points of
PS in periodically modulated NLS equation [41]. The numerical result shows that the main properties of the PCs persist in
nonintegrable situations [41]. Their predictions are in good agreement with numerical findings for an interesting specific case
of an experimentally realizable periodically dispersion modulated photonic crystal fiber [41]. Wang et al: have further found
the Peregrine wall (PW) in the variable-coefficient Hirota equation and studied the effects of the higher-order terms on the
PCs and PWs [42]. The third-order dispersion and nonlinearity terms can affect the characteristics of the spatial and temporal
distribution of the PCs and PWs [42].

We will focus on a variable-coefficient Lenells-Fokas (LF) equation [43,44]

qxt � aðtÞ qxx þ 4 bðtÞ q� 2 i gðtÞ qx±4 i bðtÞ
��� q���2qx ¼ 0 ; (1)

which is an integrable generalization of LF equation involving three arbitrary time-dependent coefficients aðtÞ, bðtÞ and gðtÞ.
Note that Eq. (1) recovers the corresponding autonomous LF equation by taking aðtÞ ¼ a0, bðtÞ ¼ b0 and gðtÞ ¼ g0 with a0, b0
and g0 as constants. Kundu has shown that Eq. (1) shares the accelerating soliton solution and other unusual features [43] for
the time-dependent coefficients bðtÞ ¼ a0 t and gðtÞ ¼ c0 t. Lü has obtained soliton solutions and investigated the nonau-
tonomous motion of the accelerated and decelerated solitons for Eq. (1) by the bilinear method [44] and has presented the
multi-soliton solutions of the autonomous LF equation [45] as well. He et al. have presented an analytical representation of
the RWs of the autonomous LF equation by means of Darboux transformation (DT) [46,47]. Wang et al. have studied the
characteristics of the nonautonomous first-order RWand breathers for Eq. (1) [48] as well as the higher-order localized wave
structures [49]. However, to our knowledge, the PC and PW structures of Eq. (1) have not been studied elsewhere. In
particular, the higher-order PCs and PWs have yet not been reported in previous models [41,42].

In this paper, firstly, we display three types of multiple compression points structures under suitable periodic modulation,
including the breather multiple births (BMBs), PCs and PWs. Then we investigate the properties of the PCs and PWs. We
finally present higher-order solutions such as the second-order PCs and Peregrine pyramids (PPs). It is expected that the
results obtained in this paper will be useful to find the changeable but feasible breathers and RWs in experimentally
controlled environments.

The arrangement of the paper is as follows: In Sec. 2, we will construct the generalized ABs solution and present different
types of BMBs for Eq. (1). In Sec. 3, we will study the dynamics of the PC and PW structures as well as their spatiotemporal
characteristics. In addition, we will analyze the effects of variable coefficient aðtÞ on these waves. In Sec. 4. we will introduce
some physical quantities to further explore the typical characteristics of the PCs. Higher-order solutions of Eq. (1) will be given
in Sec. 5. Finally, Sec. 6 will be the conclusions of this paper.

2. Generalized AB solution and BMBs

To construct the generalized AB solution, we consider the following plane-wave solution as the seed solution

q½0� ¼ c ei r; (2)

where

r ¼ bðtÞ þ a x ; bðtÞ ¼
Z ��

4
a
� 4 c2

�
bðtÞ þ a aðtÞ þ 2 gðtÞ

�
dt: (3)

The parameter c is the initial amplitude of the background and a is the wave number. Further, by means of the DTof Eq. (1)
[48,49], we present the first-order generalized AB solution as follows

q½1�AB ¼
 
c� 2 i

n
G½1�
AB � i H½1�

AB

D½1�
AB þ i F ½1�AB

!
ei r; (4)

with

G½1�
B ¼ s1 coshðt VH þ x hRÞ þ s2 cosðt VT þ x hIÞ þ s�2sinðt VT þ x hIÞ þ s�1 sinhðt VH þ x hRÞ ;

H½1�
B ¼ x1 coshðt VH þ x hRÞ þ x2 cosðt VT þ x hIÞ þ x�2 sinðt VT þ x hIÞ þ x�1 sinhðt VH þ x hRÞ;
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