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A B S T R A C T

In this paper, we analyze the effect of the discrete number of velocity directions of the phonon on thermal
conductivity prediction in the cross-plane direction of superlattices based on solving the phonon Boltzmann
transport equation (BTE) numerically. The simulation shows that the accuracy of the calculation is mainly
affected by discretization number of polar angle (Nθ). To improve the efficiency in the two-dimensional situa-
tion, choosing a proper discrete number of velocity directions of the phonon can be used. Besides, the re-
lationship between the control angle (M) and Knudsen (Kn) number is concluded when the relative error is less
than 5%.

1. Introduction

In recent years, thermal conductivity of superlattice structures has
attracted significant attention owing to the importance of different
applications [1–7]. Due to the reduction of phonon thermal con-
ductivity, many kinds of superlattices, such as Bi2Te3/Sb2Te3 [2] and
PbTe/PbSeTe [8] quantum dot superlattices, have shown dramatic in-
crease in thermoelectric figure of merit ZT [9,10] values compared to
their bulk materials. The theoretical value of the thermal conductivity
of the superlattices is calculated from the constituting single crystal
materials based on the Fourier’s Law of Heat Conduction. Several ex-
periments [11-13] reveal that the experimental value is lower than the
theoretical one. Moreover, the thermal simulation of superlattices is not
perfect at present. The distribution and transmission of thermal energy
in the lattice are often described by the Boltzmann transport equation
(BTE), when the effects of coherent phonon transport are negligible
[14,15]. Phonon distribution function is affected by several factors,
such as space-time coordinates, wave vector as well as polarization,
making fully-resolved simulation costly [14,16,17]. Thus, in order to
solve the BTE, it is necessary to develop efficient and accurate nu-
merical methods. In this work, we try to figure out the thermal con-
ductivity of superlattice structures accurately and efficiently by sim-
plifying the phonon velocity directions. The finite volume method
(FVM) [18] as well as the discrete ordinates method (DOM) [14] is a
common method. In comparison, the FVM is unaffected by the false
scattering, and radiation effect is not obvious as well [19]. As regard to
structured Cartesian grids, weights of the different angular direction is

the main difference between the DOM and the FVM [14]. However,
owing to the need of structured Cartesian grids, the DOM imposes a
great trouble on the problems related to complex geometries. By con-
trast, the FVM is much more easily employed to unstructured grids.

Recently, FVM has been studied to numerically solve the BTE by
many researchers. R. Yang and G. Chen [20] discussed the thermal
conductivity prediction of Periodic Nanocomposites by employing the
FVM. Y. Xu and G. Li [21] also employed the FVM to analyze the in-
fluence of the strain on phonon thermal conductivity of two-dimen-
sional nanocomposite materials. H. Li, Y. Yu, and G. Li [22] also ana-
lyzed the thermoelectric properties of nanoporous silicon by using the
FVM. SC. Mishra [23] discussed the compatibility and suitability of the
lattice Boltzmann method (LBM) and the FVM, finding that there is no
much difference between the two techniques in iteration number and
CPU time. To meet accuracy, these works chose a larger discrete
number of velocity directions, but will reduce the computational effi-
ciency because the number is proportional to the simulation time in
theory [20,21,23].

Considering the conditions above, we analyze the thermal con-
ductivity of superlattices using the FVM and the LBM. The motivation of
this work is to try to find the effect of discrete number of velocity di-
rections on thermal conductivity prediction of superlattices.
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2. Theoretical model and computational procedure

2.1. Phonon Boltzmann equation

Knudsen number (Kn) is a significant dimensionless number de-
scribing the mechanism of phonon transport, which ranges from bal-
listic to diffusive. Kn= Λ/L, where Λ denotes phonon mean free path, L
donates representative physical length scale and defines the thermal
transport domain [14]. When Kn is much less than 1, the Fourier ap-
proximation is applicable, for diffusive effects are dominant. With the
increase of Kn, the influence of bulk scatting becomes not that sig-
nificant. In the meanwhile, the heat transfer is controlled by the phonon
interactions with boundaries as well as interfaces. When Kn is bigger
than 1 and the length scale of the system nearly equals the phonon
mean free path, the BTE can be employed to the modeling of phonon
transport [16,17,24]. Noting that, the phonon model can predict the
thermal conductivity of superlattices well, we focus on the phonon
transport in the cross-plane direction, by assuming that [20]: (1) the
effect of phonon wave can be ignored. (2) the average phonon mean
free path (MFP) is applied to approximately describe the frequency
dependent scattering rate in the bulk medium. (3) the interface scat-
tering is diffuse.

Based on the phonon distribution function, the general form of the
phonon Boltzmann equation can be defined as [16,17,20,24]
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where I is the total phonon intensity, subscript i (=1, 2) represents the
i-th layer, D(ω) represents the state density per unit volume, f denotes
the phonon distribution function, ℏ is the Planck constant, V| |mi re-
presents the absolute value of the phonon group velocity, ω represents
the phonon frequency, ωmax represents the cut-off frequency of each
polarization.

The first law of thermodynamics is used in the analytical process.
Based on this, we acquire an expression for the equilibrium intensity
[25]:
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The single mode relaxation time approximation is used in this
procedure. Based on this, we may get
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where θ and φ, as shown in Fig. 1, represent the polar angle and azi-
muthal angle, respectively. Λ represents the average phonon MFP.

In addition, Ref. [26] shows that MFP really suits the thermal
conductivity modeling on cross-plane transport. Hence, considering the
similarity of the two researches, frequency independent phonon MFP
was also used in this study for the sake of simplicity.

2.2. Boundary and interface conditions

Owing to the non-physical accessional scattering at the boundaries,
specified emitted temperature boundary condition may lead to man-
made temperature jump at the boundaries [27]. In this work, the per-
iodic boundary condition is used based on the fundamental physics of
phonon transport in periodic structures [15].

The same phonon intensity distortion exists in every corresponding
direction of each corresponding point on the boundary of x= 0 and
x= L, which physically reflects the periodicity of the boundary con-
dition [20].

The equation can be written as
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Nomenclature

c volumetric specific heat, J K−1 m−3

D states density per unit volume, m−3

f phonon distribution function
ℏ Planck constant divided by 2π, J s−1

I phonon intensity, Wm−2 s r−1

k thermal conductivity, Wm−1 K−1

L representative physical length scale, m
M control angle M=Nθ×Nφ, rad2
N discretization number, rad
U volumetric internal energy, J/m−3

V| |mi magnitude of the phonon group velocity, ms−1

X coordinate
Y coordinate
Z coordinate
Λ mean free path, m
υ group velocity, ms−1

ω phonon frequency, Hz
ωmax the cut-off frequency of each polarization, Hz

θ polar angle, rad
φ azimuthal angle, rad
μ directional cosine
ζ thickness
Kn Knudsen number

Superscript

∗ deviation

Subscripts

i properties of i-th layer
θ polar angle
φ azimuthal angle
e effective
m polarization
x coordinate
y coordinate
z coordinate

Fig. 1. Local coordinate used in phonon Boltzmann equation simulation.
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