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a b s t r a c t

In the formation of a typical equiaxed structure during the solidification of metals and alloys, multiple
equiaxed dendrites typically grow with motion, collision, and coalescence and subsequently grain growth
occurs after the formation of grain boundaries. In this study, we develop a phase-field lattice Boltzmann
model that can simulate these complex formation processes involving equiaxed structures. In this model,
multiple dendrites are represented by employing multiple phase-field variables, and the formation of
grain boundaries is modeled by simply introducing an interaction term between the phase-field vari-
ables. Liquid flow is computed using the lattice Boltzmann method, and the motion of a solid is described
by solving the equations of motion. Collision-coalescence representation in the present model was vali-
dated by performing simulations of collisions between two circular objects. Furthermore, grain growth
was validated through static and dynamic conditions in a simple three-grain system. Good agreements
with theoretical solutions were obtained for both cases. Finally, using the developed model, a series of
formation processes of multiple-dendrite growth with motion, collision, and coalescence and the subse-
quent grain growth are successfully performed for the first time.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

A typical solidification structure consists of columnar and
equiaxed polycrystalline structures [1–3]. It is essential to accu-
rately control and predict the equiaxed structures, especially
because they determine the mechanical and other properties of
the cast materials. In the formation process of an equiaxed struc-
ture, the solids nucleate in a supercooled liquid and they grow into
equiaxed dendrites. Importantly, they move in the liquid as a result
of forced convection caused by pouring and/or natural convection
due to the difference in density between the solid and liquid. Dur-
ing growth of equiaxed dendrites, therefore, they collide with each
other and coalesce into a single solid particle. The grain boundaries
are then formed and grain growth begins. Finally, the entire region
becomes a polycrystalline solid and grain growth proceeds.

The formation of an equiaxed structure has been simulated
using a phase-field method [4], which is the most accurate model
for describing dendritic growth, in both two dimensions (2D) [5,6]

and three dimensions (3D) [7,8]. In such simulations, the motion of
dendrites was not taken into account. Because the melt convection
necessarily occurs in terrestrial solidification, the isolated equiaxed
dendrites can move [9–12]. Considering this fact, some studies on
dendritic growth with motion have been presented in recent years
[13–18]. Rojas et al. succeeded in modeling this phenomena by
coupling the phase-field method, lattice Boltzmann method, and
equations of motion [15]. Besides, through accelerated computa-
tions of the model using a graphical processing unit (GPU), Takaki
et al. showed that the model can simulate the long-distance
motion of growing dendrite with rotation [17]. Although good pre-
dictions have been obtained, this model focus on the growth of a
single dendrite. Thus, Qi et al. modeled the multiple dendrite
growth with motion [18]. A more realistic situation, however,
involves the interaction of multiple dendrites undergoing growth,
motion, collision, coalescence, and the subsequent grain growth.
This complex equiaxed polycrystalline microstructure has not been
predicted so far.

In this study, by extending the model developed by Rojas et al.
[15] to multiple dendrites, we develop a new phase-field lattice
Boltzmann model that can describe the formation process of an
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equiaxed polycrystalline structure with growth, motion, collision,
and coalescence of multiple dendrites and subsequent grain
boundary formation and grain growth.

2. Model

In this study, a 2D isothermal solidification of a binary alloy is
assumed unless otherwise stated. The dendrite growth and subse-
quent grain growth are modeled using the phase-field method
[19,20], the liquid flow is computed using the lattice Boltzmann
method, and the motion of a solid is expressed by the equations
of motion. The combination of these models has some advantages
including the easy implementation on Cartesian grids and the
capability of parallel computation.

2.1. Phase-field method

A polycrystalline structure is expressed by N phase-field vari-
ables /i, which are defined as /i = +1 in the i-th grain and /i = �1
in the other grains and change smoothly at the interface region.
At the solid–liquid interface, the time evolution equation of /i

expressing the i-th solid grain is expressed as [19]:
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where s is the phase-field relaxation time, W is the interface thick-
ness, k⁄ is a parameter associated with the thermodynamic driving
force, and u is the non-dimensional supersaturation. The terms s
and W are functions of crystal orientation hi expressed as s(hi) = s0-
as(hi)2 and W(hi) =W0as(hi), respectively. Here, the anisotropic func-
tion was set to as(hi) = 1 + e4cos(4hi), where e4 is the strength of
anisotropy. The change in hi occurs due to the rotation of the den-
drite and is updated during the simulation. At the solid–solid grain
boundary and the higher-order junctions, such as the triple junc-
tion, the following equation is solved:
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Here, it is assumed that the energy and mobility of the grain bound-
aries are the same as the average values of the solid–liquid inter-
face. In Eq. (2), i takes a value from 0 to N, and the 0th phase-
field variable, /0, represents the liquid phase. The term vi is the
interaction term between the multiple phase-field variables, and

it is derived to satisfy the relation
PN
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ating this relation with respect to time t, we obtain
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substituting Eq. (2) into this equation, we get:
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Finally, the following form proposed by Lee and Kim [20] to satisfy
Eq. (3) is employed:
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The non-dimensional supersaturation u is defined by
u = (Cl � Cl

e)/(Cle � Cs
e), where Cl

e and Cs
e are the equilibrium concen-

trations of the liquid and solid, respectively. We employed the
relations k = Cs

e/Cle = Cs/Cl for the concentrations of the liquid and
solid, Cl and Cs [21]. Therefore, the concentration C is given as C
= Cs (1 + /)/2 + Cl (1 � /)/2. The evolution equation of u is given by:
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where JAT is an antitrapping current expressed as JAT = �(1 � kDs/
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senting the diffusion coefficients of the solid and liquid, respec-
tively. /s is the phase-field variable expressing the solid phase, or
/s = �/l = �/0, because the 0th phase-field variable is set to express
the liquid phase. In addition, J is the fluctuating current [22] and q(/
) is an interpolating function expressed as q(/s) = [kDs + Dl + (kDs �
Dl)/s]/(2Dl). In Eq. (4), U is the fluid velocity computed by the lattice
Boltzmann method.

2.2. Lattice Boltzmann method

The lattice Boltzmann equations used in this study are identical
to those developed by Rojas et al. [15]. The lattice Boltzmann equa-
tion is expressed as:

f kðxþ ckdt; t þ dtÞ ¼ f kðx; tÞ �
1
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where fk is the particle velocity distribution function in the dis-
cretized k-th direction, fkeq is the equilibrium distribution function,
sLBM is the single relaxation time, ci is the discrete particle velocity,
x is the position vector, t is the time, dt is the time step size, and Gk

is the discrete external force. The equilibrium distribution function
fk
eq is expressed as:
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wherewk is the weight function and c is the lattice velocity. The dis-
crete external force Gk is given by:
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where G is the dissipative drag force vector satisfying the no-slip
boundary condition at the solid–liquid interface [23]:
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Here, m is the kinetic viscosity, h is a constant equal to 2.757, and
USa is the a-th solid velocity vector determined by the equations
of motion. The density q and fluid velocity U are computed, respec-
tively, using:
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where Q is the number of discrete velocities. In the following sim-
ulations, the D2Q9 model is used, which denotes a 2D problem
and Q = 9.

Note that all the parameters in this section are dimensionless
values, i.e., the length, time, and velocity are normalized by the
dimensional lattice sizeDx, the time incrementDt, and the velocity
Dx/Dt, respectively. Therefore, the lattice size dx and dt are rescaled
to unity as dx = 1 and dt = 1.
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