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a b s t r a c t

Lower bainite is a steel microstructure composed of austenite, ferrite and carbides within the ferrite. The
transformation of austenite to lower bainite is one of the most complex transformations in steel. The car-
bon concentration of bainitic ferrite is of major importance for the carbide precipitation. A phase-field
model to simulate the transformation of lower bainite including carbon diffusion and carbide formation
is presented in this work. The model is based on a classical phase-field approach coupled with a viscous
Cahn–Hilliard equation to simulate the separation of the carbon. During the isothermal simulation a
sheaf of bainitic ferrite grows. The carbon starts to diffuse within the supersaturated ferrite which can
only contain a fraction of the carbon which was stored in the austenite. At the accumulations of the
carbon concentration carbides are precipitated. The simulations show successfully the described growth
characteristics of the lower bainite transformation including carbide formation.

� 2015 Published by Elsevier B.V.

1. Introduction

Bainite is a microstructure of steel that can be formed by
heat treating. It can be build by continuous cooling or isother-
mal between the temperatures of perlite and martensite
(250–550 �C). In materials science a distinction between upper
bainite and lower bainite is made. Upper bainite forms at higher
temperatures whereas lower bainite forms at temperatures closer
to the martensite start temperature. The transformation always
starts from austenite. At first bainitic ferrite sheaves grow from
the borders of the grain. These sheaves consists of smaller
sub-units. Within the supersaturated ferritic sheaf the carbon
starts to diffuse, because ferrite can contain much less carbon than
austenite [1]. In upper bainite the majority of the carbon partitions
into austenite and precipitates as carbides where the concentration
is high enough. At lower temperatures the diffusion is slower and
most of the carbon cannot partition out of the ferrite. It starts to
build accumulations and precipitates as carbides within the sheaf.
This movement of the carbon within bainitic ferrite can be denoted
as uphill diffusion. The resulting microstructure is lower bainite.

Due to its advantageous balance of strength and ductility,
bainite has applications in the automotive industry, in highly
loaded parts of the railway and in other divisions of engineering.
Models to describe the formation of bainite can be helpful tools

to accelerate the development of new applications, because the
transformation is a very time-consuming process.

In materials science the phase-field method is widely used
to model diffusive/reconstructive transformations as well as dis-
placive ones [2,3]. It is based on a system of partial differential
equations which describes the growth of phases and can be derived
from the Ginzburg–Landau equation [2]. The evolution of the so
called order-parameters is modeled. At the interfaces of the phases
the parameters vary continuously. Therefore the solution does not
show sharp interfaces, but diffuse ones which can be governed by a
thickness parameter. The advantage of this approach is that it is
not necessary to track the interfaces.

Especially for steel there are many approaches describing the
transformations austenite-to-ferrite [4,5], austenite-to-perlite [6],
Widmanstätten formation [7], austenite-to-martensite [8,9] and
others. Phase-field models with coupled diffusion equations exist,
too [10]. However there are few phase-field models for the bainitic
transformation [11,12], because it is one of the most complex
transformations in steel. Song et al. [12] simulate the growth of a
bainitic sheaf with the phase-field method combined with a
modified Fick’s diffusion equation to model the partitioning of car-
bon at the interface between bainitic ferrite and austenite. This
model is more relevant for upper bainite and it does not include
the precipitation of carbides. They show high-quality HRTEM
images. Arif and Qin [11] simulate the evolution of the subunits
which arise on a lower scale than bainitic sheaf growth. Therefore
they do not show a partitioning of carbon within the bainitic ferrite
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phase but a diffusion out of the phase. Remarkable is the three
dimensional autocatalysis simulation. The formation of lower bai-
nite, the partitioning of carbon within the bainitic ferrite and the
precipitation of carbides have, up to our knowledge, not been con-
sidered until now.

There are other approaches simulating the evolution of bainite
different to the phase-field method in the literature. For example
Sidhu et al. [13] present a model describing the kinetics for an
isothermal transformation. They calculate the volume fraction of
bainite depending on the transformation time and the tempera-
ture. Another work [14] also focuses on the volume fraction growth
and the incubation time of the bainitic transformation. Lambert-
Perlade et al. [15] report about multi-scale crystallographic and
metallographic investigations with analytical micromechanical
models. Mahnken et al. [16] focus on the multi-scale simulation
of the transformation. On the micro level it is based on an ordinary
differential equation which considers the growth of different crys-
tallographic variants. Another publication [17] discusses a macro-
scopic model with transformation plasticity.

In thisworkwe present amodel to simulate the bainitic transfor-
mation considering bainitic ferrite, austenite, carbide and the diffu-
sion of carbonwithin a bainitic sheaf. The displacive transformation
[1] between austenite and bainitic ferrite is described by a phase-
fieldmethod. To simulate the complex diffusion behavior of the car-
bon within the bainitic ferrite the Cahn–Hilliard equation is used.
This equation is central to materials science because it describes
the movement of atoms between cells [2] and has been applied to
simulate carbon diffusion before [7,11]. Fick’s law cannot applied
here, because it does not describe uphill diffusionwithin one phase.
The precipitation of carbides will be simulated with the phase-field
method again. We do not consider crystallographic orientation,
crystalline anisotropy or any kind of stress and strain.

An outline of this work is as follows: In Section 2 the governing
equations of the coupled initial boundary value problem are
presented. Firstly the multi-phase-field model based on the
Ginzburg–Landau equation is derived from the local free energy.
In a second step this model is extended by anisotropy. In
Section 2.3 the diffusion equation is introduced. This equation is
coupled to the phase propagation. The last subsection of Section 2
is about the precipitation of carbides. Section 3 provides a detailed
insight into the implementation of the model. In Section 4 three
numerical examples are presented showing the lower bainitic
transformation. The last section is a summary and gives an outlook
for further investigations.

2. The phase-field theory

2.1. Governing equations

The phase-field model is based on the Ginzburg–Landau equa-
tion [2]. It can be derived using a functional of the local free energy
F which depends on the local phase-field order-parameters /i and
their spatial derivatives r/i [18,19,7]

Fð/1; . . . ;/n;r/1; . . . ;r/nÞ ¼
Z
V

XNp

i;jði<jÞ
f intfij ð/i;/j;r/i;r/jÞ
n

þf potij ð/i;/jÞ
o
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where Np denotes the number of phases. The density of the local
free energy functional is defined as the sum of an interfacial energy

density f intfij and a potential free energy density f potij . As a working
solution we use the interfacial energy density [18] with the gradient
energy coefficient �ij

f intfij ¼ 1
2
�ij /ir/j � /jr/i

� �2
: ð2Þ

For the potential energy term there are different approaches in the
literature [3]. Fig. 1 illustrates two commonly used potentials, the
double well potential and the double obstacle potential. We use
the standard double well potential such that the potential free
energy reads [18]
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wheremij is the thermodynamic driving force and 1=aij is the poten-
tial constant between the phases i and j.

By minimizing the local free energy the evolution equations of
the phase-field order-parameters are derived [18,19]
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The parameters �ij; aij; sij, and mij are now replaced by the physical
material parameters, interface mobility lij, interface energy rij,
interface thickness gij and the change of Gibbs energy DGij. Note
that lij ¼ lji; rij ¼ rji and gij ¼ gji but DGij ¼ �DGji.

sij ¼
gij

lij
; aij ¼

gij

72rij
; �ij ¼ rijgij; mij ¼ �6DGijaij: ð5Þ

The derivation of the Eqs. (5) using the Gibbs–Thomson equation
[20] can be found in the appendix. With these results the evolution
equation of the phase parameters reads
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ð6Þ
For the lower bainitic transformation considered in this work
Np ¼ 3 phases are involved:

1. bainitic ferrite (/1),
2. austenite (/2) and
3. carbide (/3).

2.2. Phase-field anisotropy

To simulate the typical slim form of bainite sheaves an anisotro-
pic phase-field model as presented by [21,22] is used. The interface
energy rij is redefined as a function of the actual growth direction h
and of a predefined main growth direction called h0

rij ¼ rijðh; h0Þ: ð7Þ
To be specific we use

rijðh; h0Þ ¼ r0
ij � ð1þ s � cosðh� h0ÞÞ; ð8Þ

Fig. 1. Double well and double obstacle potential.
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