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a b s t r a c t

The mechanical properties of a deformed workpiece are sensitive to the initial microstructure before pro-
cessing commences. Generally, the initial microstructure is random in nature and location specific. The
location-dependence of the microstructure dramatically increases the dimensionality of the stochastic
input and thus leads to the ‘‘curse of dimensionality’’ in stochastic deformation problems. In this work,
a graph-theoretic approach is used to address the stochastic multiscale deformation problem and com-
pute the propagation of the initial microstructure uncertainty to the forged disk properties. Following
the finite element representation of the multiscale deformation problem, a graphical representation is
introduced with nodes in the graph representing the macro- and meso- scale random variables and links
between nodes modeling the dependence relations between variables at each scale and across scales.
Model reduction techniques are employed locally in the graph to represent the initial random micro-
structure. Then the conditional distribution of the multi-output mechanical responses on the low-dimen-
sional representation of the initial microstructure is factorized into a product of local potential functions.
An expectation-maximization algorithm is used to learn the non-parametric representation of these
potentials using a set of training data. A non-parametric loopy belief propagation method is applied to
perform uncertainty quantification tasks. The non-parametric nature of the model is able to capture
non-Gaussian features of the responses. The developed framework can be used as a surrogate model to
predict the mechanical response fields for any input microstructure realization as well as our confidence
on such predictions. A multiscale disk forging example of FCC nickel is presented to demonstrate the
accuracy and efficiency of the constructed framework for addressing uncertainty quantification problems
in multiscale deformation processes.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The macro-scale properties of polycrystalline materials (e.g.
metals, alloys, etc.) are sensitive to the underlying microstructure.
Microstructure uncertainty at a material point has been exten-
sively studied using a variety of methods. For example, in [1,2],
the principle of maximum entropy (MaxEnt) was used to describe
the microstructure topology of two-phase and polycrystalline
materials. A set of correlation functions or grain size moments
were given as the prescribed constraints. Realizations of micro-
structures were then sampled from the MaxEnt distribution and
interrogated using appropriate physical models, e.g., a crystal plas-
ticity finite element method (CPFEM) [3]. The Monte Carlo (MC)
method was adopted to compute the error-bars of the effective

stress–strain response of face-centered-cubic (FCC) aluminum. In
[4], the orientation distribution function (ODF) was adopted to de-
scribe the polycrystalline microstructure. A number of ODF sam-
ples were given as the input data. The Karhunen-Loève
expansion (KLE) [5,6] was utilized to reduce the input complexity
and facilitate the high-dimensional stochastic simulation. The
stress–strain curve with error bars and the convex hull of elastic
moduli of FCC aluminum after deformation were studied. Mechan-
ical response variability due to both orientation and grain size
uncertainties were studied in [7].

In this work, we are interested in modeling the variability of
properties of the workpiece in a deformation process induced by
variability in the initial microstructure. Therefore, we need to mod-
el the stochastic space of initial microstructures in the workpiece,
not simply at a material point. To quantify the effect of microstruc-
tures on macro-properties and investigate uncertainty propagation
through different length scales, a deterministic multiscale defor-
mation simulator needs to be adopted. Each point of the workpiece
is associated with a microstructure in the meso-scale (Fig. 1), the
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deformation of which is controlled by the local deformation gradi-
ent estimated in the macro-scale. Mechanical properties/responses
of the material point are evaluated via proper (e.g. crystal plastic-
ity) constitutive models applied on the deformed microstructure.
In general, microstructures are location-specific (meaning that
microstructures associated with different spatial points have dif-
ferent distributions) [8]. As a result, the stochastic input to a mul-
tiscale deformation simulator is extremely high-dimensional,
which prevents one from efficiently quantifying the variability of
properties of interest. This problem is usually referred to as the
‘‘curse of dimensionality’’. In [9], the authors introduced a novel
data-driven bi-orthogonal Karhunen-Loève Expansion (KLE) strat-
egy, which decomposed the multiscale random microstructure into
a few modes in both the macro- and meso-scales. The macro
modes were further expanded through a second-level KLE to sepa-
rate the random and spatial coordinates. A high-dimensional mul-
tiscale disk forging example of FCC nickel was provided to show
the merit of this methodology.

Recently in [10,11], two distinct probabilistic graphical model
based uncertainty quantification frameworks were presented and
applied to flows in random heterogeneous media. Here we extend
the approach in [10] to study uncertainty quantification in multi-
scale disk forging problems. The adopted probabilistic graphical
model includes the following features: (1) a spatially localized mod-
el reduction technique is applied to reduce the dimensionality of the
microstructure input; (2) the high-dimensional probabilistic rela-
tionship between the random microstructure input and the random
response (mechanical properties) is addressed by decomposing the
global problem into spatially local low-dimensional problems de-
fined in the graph; (3) a non-parametric nature of the framework
is adopted that is able to capture non-Gaussian features; and (4) a
sampling based non-parametric belief propagation algorithm
[12,13] is utilized to carry out the inference problems related to
uncertainty propagation and surrogate prediction problems.

The paper is organized as follows. First, the stochastic multi-
scale disk forging problem is introduced in Section 2. Then the pro-
cedure of constructing an appropriate probabilistic graphical
model and associated algorithms are presented in Sections 3 and
4. Various examples are given in Section 5 demonstrating the effi-
ciency of the developed framework. Brief discussion and conclu-
sions are provided in Section 6.

2. Stochastic multiscale disk forging problem

We next provide the representation of the microstructure (Sec-
tion 2.1). The multiscale deterministic solver for the forging pro-
cess is then briefly introduced in Section 2.2. The deterministic

solver is used to solve an axisymmetric disk forging problem as
illustrated in Fig. 2. Finally, in Section 2.3, we discuss the construc-
tion of a stochastic input microstructure model.

2.1. Microstructure representation

The location specific random microstructure is defined as a ran-
dom field A ¼ fAx : x 2 Dg, where D � Rd; d ¼ 1;2;3 is the spatial
domain of interest (physical space). For numerical simulation, a
discrete form of A is needed. We discretize the macro-scale work-
piece using finite elements, and employ an array of orientational
features of constitutive grains to represent the microstructure at
each integration point of the finite element discretization. Note
that the crystal plasticity constitutive model adopted here (dis-
cussed next) only updates grain orientations while keeping the
grain sizes fixed, i.e., only the orientation information is consid-
ered. Therefore, the source of uncertainty in the stochastic simula-
tion is the texture of the microstructure in the workpiece before
processing. Texture has been proven to have a great effect on the
mechanical properties of polycrystals [9]. For a microstructure
(e.g. FCC nickel) composed of Ngr grains, the orientations are de-
scribed by Rodrigues parameters [14], an axis-angle representation
that consists of three components defined as:

r ¼ w tan
h
2
; ð1Þ

where r ¼ fr1; r2; r3g are the three Rodrigues components,
w ¼ fw1;w2;w3g gives the direction cosines of the rotation axis
with respect to microstructure coordinates, and h is the rotation an-
gle. As a result, the location dependent random microstructure field
A can be written as

A ¼ ðA1;A2; . . . ;ANI Þ; ð2Þ

where NI denotes the number of integration points on the finite
element mesh, Ai describes the microstructure at the ith integration
point, which contains 3� Ngr random variables. The resultant poly-
crystalline microstructure representation is thus high-dimensional.
For example, for a 2D workpiece dicretized by nel quadrilateral ele-
ments, each of which has nint integration points (thus with
NI ¼ nel � nint), the total dimensionality of the microstructure is
3� Ngr � nel � nint .

Fig. 1. The microstructure (meso-scale) features vary with location and across
different realizations of the disk. Exploring these correlations is important in
addressing the high-dimensionality of the random microstructure field.

Fig. 2. Schematic view of the workpiece and die in a disk forging process. The
bottom figure shows the disk shape by rotating the final 2D plane obtained from the
multiscale forging solver around the central axis.
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