Journal of Nuclear Materials 470 (2016) 187-196

Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

Formation and accumulation of radiation-induced defects and radiolysis products in modified lithium orthosilicate pebbles with additions of titanium dioxide

JOURNAL OF

1987

Arturs Zarins ^{a, b, *}, Oskars Valtenbergs ^{a, b}, Gunta Kizane ^a, Arnis Supe ^a, Regina Knitter ^c, Matthias H.H. Kolb ^c, Oliver Leys ^c, Larisa Baumane ^{a, d}, Davis Conka ^{a, b}

^a University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga, Latvia

^b University of Latvia, Faculty of Chemistry, Jelgavas Street 1, LV-1004, Riga, Latvia

^c Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-KWT), 76021, Karlsruhe, Germany

^d Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia

HIGHLIGHTS

• Formation of RD and RP in modified Li₄SiO₄ pebbles with additions of TiO₂ is analysed for the first time.

• Due to additions of TiO₂, concentration of paramagnetic RD slightly increased in modified Li₄SiO₄ pebbles.

• Modified Li₄SiO₄ pebbles have good radiation stability compared to reference pebbles.

• Irradiation temperature has significant impact on radiolysis of modified Li₄SiO₄ pebbles.

ARTICLE INFO

Article history: Received 3 June 2015 Received in revised form 21 December 2015 Accepted 22 December 2015 Available online 24 December 2015

Keywords: Tritium breeding ceramic Lithium orthosilicate Radiolysis Accelerated electrons Irradiation temperature

ABSTRACT

Lithium orthosilicate (Li₄SiO₄) pebbles with 2.5 wt.% excess of silicon dioxide (SiO₂) are the European Union's designated reference tritium breeding ceramics for the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM). However, the latest irradiation experiments showed that the reference Li₄SiO₄ pebbles may crack and form fragments under operation conditions as expected in the HCPB TBM. Therefore, it has been suggested to change the chemical composition of the reference Li₄SiO₄ pebbles and to add titanium dioxide (TiO₂), to obtain lithium metatitanate (Li₂TiO₃) as a second phase. The aim of this research was to investigate the formation and accumulation of radiation-induced defects (RD) and radiolysis products (RP) in the modified Li₄SiO₄ pebbles with different contents of TiO₂ for the first time, in order to estimate and compare radiation stability. The reference and the modified Li₄SiO₄ pebbles were irradiated with accelerated electrons (E = 5 MeV) up to 5000 MGy absorbed dose at 300–990 K in a dry argon atmosphere. By using electron spin resonance (ESR) spectroscopy it was determined that in the modified Li₄SiO₄ pebbles, several paramagnetic RD and RP are formed and accumulated, like, E' centres (SiO₃³-/TiO₃³-), HC₂ centres (SiO₄³-/TiO₃-) additions have comparable radiation stability with the reference pebbles.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the International Thermonuclear Experimental Reactor (ITER, Cadarache, France) several concepts of Test Blanket Modules

E-mail address: arturs.zarins@lu.lv (A. Zarins).

(TBMs) will be tested and verified, because the tritium breeding is a key issue in future burning plasma machines, like, DEMO (Demonstration fusion power plant) [1–5]. The Helium Cooled Pebble Bed (HCPB) TBM, proposed by the European Union, will use lithium orthosilicate (Li₄SiO₄) pebbles with 2.5 wt% excess of silicon dioxide (SiO₂) as the reference tritium breeding ceramic [4–7]. Due to the excess of SiO₂, the reference pebbles have two phases – 90 mol% Li₄SiO₄ and 10 mol% lithium metasilicate (Li₂SiO₃) [8–10].

^{*} Corresponding author. University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga, Latvia.

The reference Li₄SiO₄ pebbles with 2.5 wt% excess of SiO₂ have appropriate properties for the tritium breeding, i.e. a high lithium density (up to 0.54 g cm⁻³) and melting point (eutectic point at 1298 K), a good tritium release behaviour and chemical compatibility with structural materials, i.e. Eurofer steel [6,7]. However, beside the main task to produce and release tritium, the reference pebbles must also be able to withstand the harsh conditions as expected during exploitation.

The tritium breeding ceramic in the HCPB TBM will be simultaneously exposed to an intense neutron flux (up to 10^{18} neutrons m⁻² s⁻¹), ionizing radiation dose rate (up to 1 kGy s⁻¹), a high magnetic field (7–10 T) and elevated temperatures (570–1190 K) [1,5,11,12].

The latest neutron irradiation experiments [13] showed that the reference Li_4SiO_4 pebbles will likely perform sufficiently well in the HCPB TBM. However, it has also been reported that the reference pebbles may crack and form fragments during irradiation. Therefore, it has been suggested to increase the mechanical stability of the reference pebbles, so that the pebbles withstand the operation conditions as expected in the HCPB TBM.

One possible option to increase the mechanical stability of the tritium breeding ceramic is to change the chemical composition of the reference Li₄SiO₄ pebbles by adding titanium dioxide (TiO₂) [6,7]. Due to the additions of TiO₂, lithium metatitanate (Li₂TiO₃) is obtained as a secondary phase in the modified Li₄SiO₄ pebbles. Li₂TiO₃ pebbles are also approved as a "back-up" solution for the tritium breeding in the HCPB TBM, due to the good tritium release behaviour and appropriate mechanical, thermal and chemical properties [4–7,13,14]. Therefore, in combining these two phases – Li₄SiO₄ and Li₂TiO₃ – it is anticipated to obtain a modified tritium breeding the benefit of the high lithium density, melting temperature and good tritium release behaviour.

However, to develop a new chemical composition for the tritium breeding ceramic, it is a critical issue to understand the physicochemical processes (e.g. radiolysis), phase transitions and microstructural changes, which will occur during irradiation. From previous studies [15–17], it is known that the formation, accumulation and annihilation of radiation-induced defects (RD) and radiolysis products (RP) may occur in the ceramic during irradiation. Such RD and RP will induce changes of thermal and mechanical properties, swelling and degradation of mechanical integrity, and may also affect the tritium diffusion and release process [15–34].

The aim of this research was to investigate the formation and accumulation of RD and RP in the modified Li_4SiO_4 pebbles with different TiO₂ contents for the first time, in order to estimate and compare the radiation stability.

2. Literature review

For now, the modified Li₄SiO₄ pebbles with additions of TiO₂ have only been investigated by a few groups of researchers and thus there is a gap in the theoretical and practical knowledge about this ceramic. The first articles about the fabrication and development of the modified pebbles were published by R. Knitter et al. [7] and O. Leys et al. [35]. It was found that the additions of TiO₂ in the Li₄SiO₄ pebbles significantly increased the crush load, while the closed porosity slightly increased with increasing the content of TiO₂.

D. A.H. Hanaor et al. [36] made a behavioural phase transformation diagram of the quasi-binary $Li_4SiO_4-Li_2TiO_3$ system, to understand the phase stability and melting of the modified Li_4SiO_4 pebbles. It was reported that the mixed phase material shows liquid formation from the melting of the Li_4SiO_4 phase at temperatures >1373 K.

M. Gonzalez et al. [37] investigated the influence of the radiation-induced processes on the sorption and desorption of deuterium (D_2) in the modified Li₄SiO₄ pebbles. It was shown that the mechanisms of D_2 desorption in the modified pebbles highly depends on the radiation-induced effects.

However, until now, the radiolysis of the modified Li₄SiO₄ pebbles was not analysed, and thus additional research is required, to understand the formation, accumulation and annihilation of RD and RP during irradiation at elevated temperature. Previously, the radiolysis of the reference Li₄SiO₄ pebbles and the Li₂TiO₃ pebbles have been investigated separately.

2.1. Radiolysis of the reference Li_4SiO_4 pebbles with excess of SiO_2

The reference Li₄SiO₄ pebbles with excess of SiO₂ have two crystalline phases - Li₄SiO₄ as the primary phase and Li₂SiO₃ as a secondary phase. The radiolysis of the Li₄SiO₄ ceramic and the Li₂SiO₃ ceramic have been analysed and described by several authors [15–25]. Both, Li₄SiO₄ and Li₂SiO₃ have chemical bonds [\equiv Si–O⁻ Li⁺] and thus the mechanisms of the radiolysis and the structure of the formed RD and RP will be similar in both cases. Therefore, the radiolysis of a secondary phase, Li₂SiO₃, in the reference pebbles will not be discussed separately in this research.

The mechanism of the radiolysis is the same for the Li₄SiO₄ powders, pebbles, pellets and other ceramics; only the quantitative parameters of the radiolysis are different [25]. The localisation of RD and RP takes place through two stages. In the first stage, primary RD and RP localise mainly on structural defects and impurities, while in the second stage, the radiolysis of the matrix occurs. At the second stage in bulk ceramics (pebbles, pellets etc.), the formation of RD and RP proceeds slowly in comparison with the powders. Therefore, dense ceramic materials usually have higher radiation stability in comparison with powders.

A. Abramenkovs et al. [16] and J. Tiliks et al. [15,17,25] reported that the radiolysis of the reference Li₄SiO₄ pebbles can be divided into three main stages. In the first stage, primary electron and hole type RD, like, E' centres (\equiv Si · or SiO₃³⁻) and HC₂ centres (\equiv Si-O· or SiO₃³⁻), are formed (Eqs. (1) and (2)). The symbol " \equiv " represents three bonds to three oxygen atoms in the crystal structure.

$$SiO_4^{4-} + e^- \rightarrow SiO_3^{3-}(E'centre) + O^{2-}$$
 (2)

In the second stage of the radiolysis, secondary RD, like peroxide radicals (\equiv Si $-O-O\cdot$) and chemically stable molecular compounds – RP, are generated (Eqs. (3)–(7)). The major RP are colloidal lithium (Li_n), elementary silicon (Si_n), molecular oxygen (O₂), silanol (\equiv Si-Si \equiv), disilicate (\equiv Si-O-Si \equiv) and peroxide (\equiv Si-O-O-Si \equiv) bonds.

$$n \operatorname{Li}^+ + n e^- \to \operatorname{Li}_n$$
 (3)

$$\equiv Si - 0 \cdot (HC_2centre) + \cdot 0 - Si \equiv \rightarrow \equiv Si - 0 - Si \equiv + \frac{1}{2}O_2 \quad (4)$$

$$\equiv \mathrm{Si} \cdot (E'centre) + \mathrm{O}_2 \rightarrow \equiv \mathrm{Si} - \mathrm{O} - \mathrm{O} \cdot \tag{5}$$

$$\equiv Si \cdot + \cdot Si \equiv \rightarrow \equiv Si - Si \equiv$$
(6)

$$\equiv Si - 0 - 0 \cdot + \cdot Si \equiv \rightarrow \equiv Si - 0 - 0 - Si \equiv$$
(7)

In the third and final stage of the radiolysis, chemical reactions between RP proceed and chemical compounds, for example lithium oxide (Li₂O), are formed. Download English Version:

https://daneshyari.com/en/article/7964679

Download Persian Version:

https://daneshyari.com/article/7964679

Daneshyari.com