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a b s t r a c t

In order to evaluate local plasticity, a numerical analysis is carried out on conical nanoindenta-

tions simulated with a finite element method. A representative indentation yield stress Y∗ that

characterizes the nanoindentation is derived in order to represent the local plasticity properly

in terms of the yield stress Y, plastic strain hardening modulus Ep, Poisson’s ratio ν and the

inclined face angle of the indenter, β . Y∗ can be empirically evaluated as a function of the

representative indentation elastic modulus E∗, the relative residual depth ξ and β , where ξ is

defined as ξ ≡ hr/hmax with the maximum penetration depth hmax and the residual depth hr.

Nanoindentation experiments confirmed the validity of the empirical equation for evaluating

the yield stress.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nanoindentation evaluates the local mechanical proper-

ties without having to observe the residual imprint on the

indented surface through the analysis of the continuous re-

lationship between the indentation load P and penetration

depth h (P-h curve, hereafter) upon loading as well as un-

loading. Thus, nanoindentation techniques can be used on

specimens that are too small for conventional macroscopic

mechanical tests, e.g. thin films on a substrate, materials uti-

lized for MEMS devices.

The indentation hardness and reduced modulus can be

evaluated with the conventional P-h curve analysis (Oliver

and Pharr, 1992). Regarding the deformation mechanism,

plastic and elastic deformation simultaneously occur under

an indentation during loading, and the elastically deformed

volume recovers when the indentation is unloaded. The elas-

tic recovery during unloading can be used to evaluate the
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elastic modulus (Akatsu et al., 2015). There is a possibility

of deriving the plastic deformation resistance from the load-

ing process of the nanoindentation by subtracting the elastic

deformation from the total deformation during the loading

process.

Recent studies have revealed interesting nanoindentation

phenomena such as the indentation size effect (Akatsu et al.,

2005; Nix and Gao, 1998, Pharr et al., 2010), inverse Hall–

Petch rule for fine grained materials (Carlton and Ferreira,

2007; Mohammadabadi and Dehghani, 2008), hardening of

film on substrates (Wang et al., 2007; Xu et al., 2011; Idrissi

et al., 2011), wherein the indentation hardness is usually used

as a measure of plastic deformation resistance. In order to de-

scribe these plastic phenomena correctly, the proper plastic

deformation resistance of these materials should be evalu-

ated and investigated. Sakai has proposed a measure, called

the true hardness, that can be used instead of the indentation

hardness to represents pure plastic deformation resistance

(Sakai, 1993; Sakai et al., 1999; Sakai, 1999). The true hard-

ness is determined on the basis of the Maxwell combination

of an elastic spring and a plastic slider. There is still some
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controversy as to the validity of the simple Maxwell combi-

nation model for describing real elastoplastic deformations

caused by nanoindentations.

In this study, a simulation of a conical nanoindentation

was carried out with a finite element method (FEM), and the

simulated P-h curve was numerically analyzed in order to de-

termine the plastic deformation resistance that properly rep-

resents local plasticity. Moreover, a means of evaluating the

representative plastic deformation resistance was devised for

experimental nanoindentations. Finally, nanoindentation ex-

periments were conducted to assess the validity of the pro-

tocol for deriving the representative plastic deformation re-

sistance from the P-h curve.

2. FEM simulation and the experiment of

nanoindentation

A nanoindentation made with a conical indenter was sim-

ulated with FEM in the same way as reported in the litera-

ture (Akatsu et al., 2015). A conical indentation with an in-

clined face angle β on a cylindrical elastoplastic solid was

modeled in order to avoid the difficulty of modeling a real

pyramidal indenter. The FEM simulation exploited the large

strain elastoplastic capability of ABAQUS code (Version 5.8.1).

The FEM simulation used elastoplastic linear strain harden-

ing rules, i.e.,σ = Eε for σ < Y, and σ = Y + Epεp for σ ≥ Y.

Here, E ( ≡ dσ /dɛe) is Young’s modulus, Y yield stress, and

Ep ( ≡ dσ /dɛp) plastic strain hardening modulus, where dσ ,

dε, dεe, and dεp are, respectively, the incremental values of

stress, total, elastic, and plastic strains. Indentations were

simulated for E, ν , Y and Ep ranges of 50–1000 GPa, 0–0.499,

0.1–60 GPa, and 0–200 GPa, respectively. The von Mises cri-

terion was used to determine the onset of the yielding flow.

To confirm the validity of the numerical analysis, nanoin-

dentation experiments with a Berkovich indenter were car-

ried out on a series of commercially available metals with

well-known properties, including brass (copper alloy C2680

in the Japanese Industrial Standard (JIS) H3100), duralumin

(aluminum alloy Al2024 in JIS H4000), and beryllium cop-

per alloy (C1720 in JIS H3130). The preparation of samples

for the nanoindentation experiment and the way of making

the nanoindentation are described in detail in the literature

(Akatsu et al., 2015).

3. Results and discussions

3.1. Representative indentation yield stress Y∗ as an index of

plastic deformation resistance for indentation

According to the previous study (Sakai, 1999) and as de-

scribed in Appendix B (see Fig. (B1)), the indentation hard-

ness H defined by Eq. (A1) is not a measure of plasticity.

Moreover, as described in Appendix B (see Fig. (B2)), the true

hardness Ht (Sakai, 1993; Sakai et al., 1999; Sakai, 1999) with

n = 3 only partially represents plastic deformation resistance.

When the constraint factor C is defined as C ≡ Ht
YR

, where YR is

the representative yield stress for a conical indentation with

an inclined face angle β on an elastoplastic solid with the

yield stress Y and the plastic strain hardening modulus Ep

(Sakai et al., 2003):

YR ≡ Y + 0.22Eptan β, (1)
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Fig. 1. Indentation elastic–plastic index as a function of relative residual

depth ξ .

an indentation elastic-plastic index
YR

E′ tan β
(Sakai et al., 2003)

can be derived from rewriting Eq. (B1) under the assumption

that ke ≈ k2 as follows:

YR

E′tan β
= 1

2C

[{
γe

γ (1 − ξ)

}n

− 1

]− 2
n

(2)

where k2 is the indentation unloading parameter defined

as k2 ≡ Pmax

(hmax−hr)
2 with the maximum indentation load Pmax,

maximum penetration depth hmax and residual depth hr, and

ξ is the relative residual depth defined as ξ ≡ hr
hmax

. Here, for

a linearly elastic solid, ke is the indentation elastic parameter

defined as ke ≡ Pmax/hmax
2 and γ e is the a surface deforma-

tion parameter defined as γe ≡ hmax
hc

with the contact depth

hc at Pmax (see Appendix A and B). The index
YR

E′ tan β
infinitely

diverges for perfect elasticity with ξ = 0 and is equal to 0 for

perfect plasticity with ξ = 1. Fig. 1 plots the value of
YR

E′ tan β

input to the FEM simulation versus ξ determined from the

simulated P–h curve.
YR

E′ tan β
is, strictly speaking, not an in-

dentation elastic-plastic index because it does not seem to

be determined uniquely as a function of ξ , as shown in Fig. 1.

Now let us propose a modification to the indentation elastic-

plastic index, i.e., Y∗
E∗tan1.2β

, where Y∗ and E∗ are the represen-

tative values of yield stress and elastic modulus for indenta-

tion, respectively, in order to express the index as a unique

function of ξ . The representative indentation yield stress Y∗

is defined as,

Y ∗ ≡ Y + Epε∗

1 − (ν − b)
(3)

where

b = 0.225tan1.05β (4)

and ε∗ is representative strain for conical indentation.
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