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a b s t r a c t

A bonded bimaterial consisting of two homogeneous, dissimilar materials is considered. A
periodic array of imperfections in the bond along the interface disturb uniform heat flux in
the far field, and result in residual thermal stresses. Stresses, stress intensity factors, and
crack opening displacements are determined for two different cases of relative distortivity
of the constituent materials.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are frequently used for engineer-
ing applications, and their durability is of mathematical
interest. Models are often formulated by considering two
isotropic materials with dissimilar elastic and thermal
properties that are bonded together along an interface.
The interface may also be subject to defects such as crack-
ing, which can disturb the uniform, far-field temperature
and stress distributions.

Previous research on interface cracks has frequently
considered isolated cracks at the interface of composite
materials, where loads were specified on the crack and/or
at infinity. An isolated interface crack was considered by
England (1965). The stresses and displacements were
written in terms of complex potentials (Sadd, 2009), and
analytic continuation was used to connect the elastic
potentials of the two half-spaces. A Riemann–Hilbert prob-
lem was derived from the given tractions on the crack, and
then solved with techniques from analytic function theory

(England, 2003; Muskhelishvili, 1977). The solution deter-
mined the stress and displacement derivatives for the
whole bimaterial. The solution included an
inverse-square-root singularity in the stresses and the dis-
placement derivatives near the crack tips, and the stresses
and displacements also oscillated near the crack tips, in a
zone of significantly smaller extent than the crack length.

This interface crack problem was reconsidered
(Comninou, 1977) by assuming that near the crack tip, a
transition zone exists where the crack remains closed
and is in frictionless contact. This assumption eliminated
the oscillating singularity near the crack tip, but signifi-
cantly changed the singular behavior of the stresses there.
Similar to the work of England (1965), the problem was
isothermal. The analysis used a superposition of disloca-
tions to formulate the problem as a singular integral
equation.

By using the technique of analytic continuation, a
two-phase material can be treated analytically as if it
were a single material. It has been shown by Dundurs
(1967, 1969) that an isothermal interface crack
problem can be described by two dimensionless ratios of
elastic constants, instead of the four that would normally
be required. Hutchinson et al. (1987) also used the
reduction-of-parameters technique for an isothermal
problem.
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Thermal loading acts as an eigenstrain (equivalently, a
body force) in the elasticity problem (Mura, 1987), and
can be considered in addition to or instead of mechanical
loading. In the special case of uncoupled thermoelasticity,
the temperature distribution can be found independently
of the elastic field. In the case of steady-state heat flow,
the temperature distribution is governed by Laplace’s
equation. Florence and Goodier (1960) solved the thermoe-
lastic problem of an ovaloid hole in a homogeneous, isotro-
pic material. The full temperature distribution was found
by assuming a uniform flux at infinity, and an insulated
hole. In this problem, there was no external mechanical
loading. The disturbed heat flux induced dislocations and
tractions on the surface of the hole. Stresses in the whole
plane were derived by superposing a stress field that
annulled these dislocations and tractions. Sadd (2009) also
considered the problem for a circular hole and generalized
it to an elliptical hole.

When considering interface crack problems, the normal
heat flux and temperature are continuous across the bond.
The cracks and defects are assumed to be at least partially
thermally insulated, which implies a prescribed normal heat
flux there. Several authors have used analytic function the-
ory with analytic continuation to solve the uncoupled ther-
mal problem for an interface crack (Brown and Erdogan,
1968; Lee and Park, 1995). Both results indicate that the uni-
form heat flux is perturbed by a reciprocal-square root term
with no oscillations near the crack tips.

After finding the temperature distribution, several dif-
ferent methods can be used to solve the thermoelastic
interface crack problem. Brown and Erdogan (1968) solved
an isothermal problem, where the temperature distribu-
tion induced Volterra dislocations on the bond. Kuo
(1990) and Lee and Park (1995) directly substituted the
thermal solution into the modified complex stress and dis-
placement equations (Sadd, 2009). Either way, analytic
continuation was used to derive another Hilbert problem.
In the previous papers, the fundamental solution of the
Hilbert problem had an oscillating singularity near the
crack tip, similar to the isothermal case.

The technique for thermal problems has an inherent
asymmetry and lack of uniqueness. Through the formula-
tion of a contact problem, Barber (1978) found that if heat
flows from a material of high distortivity to one of low
distortivity, then the stresses become tensile near the
region of contact, which represents a physical contradic-
tion. In the sense of the interface crack problem, with
contact zones, Barber and Comninou (1983) resolved this
difficulty. The contact zones were assumed to have a sub-
section in which thermal contact was imperfect, which
allows a crack to remain closed instead of
interpenetrating.

Just as an applied traction can open a crack, heat flow
can also open a crack, which can lead to stress intensity
factors and an energy release rate. The singularity associ-
ated with thermal stresses, in a single material, was con-
sidered by Sih (1962), and was found to be a reciprocal
square root. The energy release rate for a multiple-phase
material was computed numerically by Xue et al. (2009).
In a recent paper (Hasebe and Kato, 2014), a bimaterial

strip with an interface crack was considered. The problem
was solved by conformally mapping the bimaterial strip to
a circle.

Composite materials may have interfaces with many
defects, which can be approximately modeled through an
assumption of periodically spaced cracks. An isothermal
elastic problem with periodically spaced interface cracks
was considered by Schmueser and Comninou (1979). The
crack was simulated by a continuous distribution of glide
and climb dislocations. The superposition of these disloca-
tions, combined with the boundary conditions, resulted in
a singular integral equation with a Cauchy kernel. A known
infinite sum transformed this integral equation to one with
a cotangent kernel. Superposition of these point sources
was also used by Block and Keer (2007) for a periodic con-
tact problem.

An alternative technique for solving periodic
two-dimensional problems is conformal mapping (Cai
and Lu, 2000), which allows use of the analytic function
theory technique. The method of Muskhelishvili (1977) is
usable for a finite number of cracks in any geometry. If
the interface has infinitely many cracks, spaced in periodic
intervals, a conformal mapping with a tangent function
will map the periodic strip to the entire complex plane,
with an additional branch cut (Cai and Lu, 2000). The
mapped Riemann-Hilbert problem can then be solved
using the method of Muskhelishvili (1977). The solution
can be remapped into the original domain and extended
periodically. This approach may be more convenient than
the superposition technique when the problem is already
formulated in terms of complex potentials.

Isothermal interface crack problems are symmetric
with respect to reversal of the materials if the boundary
conditions are symmetric. However, the thermal loading
is not symmetric in most thermoelastic problems. It has
been shown that the condition of traction-free cracks
applies only if the material of higher temperature is less
distortive than the material of lower temperature. If the
materials are reversed (or equivalently, if the thermal load-
ing is reversed), the boundary conditions imply that there
would be interpenetration instead of crack opening across
the full length of the crack (Barber and Comninou, 1983,
Martin-Moran et al., 1983, Comninou and Dundurs,
1980). By considering continuous normal tractions and dis-
placements, and zero shear tractions along the crack, the
pathological behavior can be eliminated.

In an isothermal problem, Aboudi (1987) modeled
imperfect bonds by assuming that the displacement dis-
continuities are proportional to the traction in the same
direction. In a triply periodic system, average strains were
found to determine effective elastic parameters. Librescu
and Schmidt (2001) considered a problem with anisotropic
layers and the same imperfect bonding conditions.
Debonding and frictionless contact were respectively con-
sidered as limiting cases.

Near the endpoints of a crack, other pathological behav-
ior can result. The research of Leblond and Frelat (2000),
Leblond and Frelat (2001) considers a more generally
shaped crack or interface crack. In the presence of a
mode-II stress intensity factor, the crack tip tends to kink
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