
Contents lists available at ScienceDirect

Intermetallics

journal homepage: www.elsevier.com/locate/intermet

Modeling of the temperature-dependent ideal shear strength of solid single
crystals

Tianbao Chenga,b,c,∗, Daining Fanga,b,c, Yazheng Yanga,b,c

a Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081, China
b State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
c Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China

A R T I C L E I N F O

Keywords:
A. Intermetallics
B. Elastic properties
Fracture
Mechanical properties
G. Aero-engine components

A B S T R A C T

Knowledge of the ideal shear strength of solid single crystals at finite temperatures is of fundamental importance.
It is mainly determined by the molecular dynamics simulations. However, thus obtained results are strongly
dependent on the employed empirical potentials. In the present work, two theoretical models for the tem-
perature-dependent ideal shear strength of single crystals are established based on the Frenkel's classical theory
and the energy view. To test the established models, the ideal shear strengths of β-NiAl and γ-Ni3Al alloys are
calculated from 0 K to the melting point and compared with the results reported in the literature. The study
shows that both shear modulus and ideal shear strength firstly remain approximately constant and then decrease
almost linearly as temperature changes from 0 K to melting point. However, the ideal shear strength has stronger
temperature dependence than the shear modulus.

1. Introduction

The ideal shear strength of solids is the upper bound of the shear
stress that the material can attain during shear. It is solely determined
by the nature of the atomic bonding of the material and is a function of
temperature. Its knowledge is important to a wide range of material
behaviors, such as the elastic instability (or phonon softening) of single
crystals, nucleation of dislocation, and formation of stacking fault [1,2].

The first well-known estimation for the ideal shear strength of solids
is due to Frenkel [3] (see Eq. (4)). In his calculations, just the first term
of the Fourier series for the potential energy was considered [4]. The
existing studies show that this equation often overestimates the ideal
shear strength of solids [5]. Later, Mackenzie [6] attempted to take
further terms into consideration. Unfortunately, the ideal shear strength
was not presented explicitly and one uncertain critical parameter was
involved. This makes it almost impossible to use.

At present, the most accurate method to calculate the ideal shear
strength of solids is the ab initio (AI) (or first principles) calculations
[2,7–10], in which only some basic structural information is needed.
However, this method is mainly limited to 0 K and it is still a challenge
to treat finite temperatures [11–14]. Approximation methods (mainly
referring to the molecular dynamics (MD) simulations) have thus been
used to predict the ideal shear strength of single crystals at finite
temperatures [2,15–17]. However, as well known, the results given by

these methods are strongly dependent on the employed empirical po-
tentials [11–14]. They can overestimate the ideal shear strength at high
temperatures (as shown in this work; see Fig. 2(b)).

In the present work, two theoretical models for the temperature-
dependent ideal shear strength of solid single crystals are established.
One is based on the Frenkel's classical theory. The other is in the view of
energy. To test the established models, the ideal shear strengths of β-
NiAl and γ-Ni3Al alloys are calculated from 0 K to the melting point and
compared with the results reported in the literature. The temperature
dependence of the ideal shear strength is discussed.

2. Theoretical models

2.1. Model based on Frenkel's idea

Consider a crystal that has a periodical structure in which the repeat
distance in the direction of shear is b and that perpendicular to the
shear direction is a. Assume that the energy-displacement curve during
shear deformation is a sine form. The shear stress can then be expressed
as:

= ⎛
⎝

⎞
⎠

τ τ πx
b

sin 2
c (1)

where τc is the peak stress of the sine function, i.e., the ideal shear
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strength; x is the shear displacement; and π is the circumference ratio.
For small displacement, Eq. (1) can be written as:

=τ τ πx
b

2
c (2)

In addition, the shear stress τ can also be expressed as:

=τ Gγ (3)

where =γ x
a is the shear strain and G is the shear modulus. Let Eq. (3) to

be equal to Eq. (2) one obtains:

=τ Gb
πa2c (4)

Equation (4) is the well-known Frenkel's model [3].
Note that in Eq. (4) all the parameters are temperature-dependent. If

the ideal shear strength of the material at the reference temperature T0
is known, from Eq. (4), one obtains:

=τ T G T b T
πa T

( ) ( ) ( )
2 ( )c 0

0 0

0 (5)

Combining Eq. (5) with Eq. (4) one obtains:

=τ T τ T G T
G T

b T a T
b T a T

( ) ( ) ( )
( )

( ) ( )
( ) ( )c c 0

0

0

0 (6)

For convenience, the reference temperatures of the coefficients of the
linear thermal expansion along a and b can be chosen as T0. Thus, the
following equations hold:

= + −a T a T α Τ T T( ) ( )[1 ( )( )]0 0 (7a)

= + −b T b T β Τ T T( ) ( )[1 ( )( )]0 0 (7b)

where α and β are the coefficients of the linear thermal expansion along
a and b, respectively. Equation (6) can then be rewritten as:

=
+ −
+ −

τ T τ T G T
G T

β T T T
α T T T

( ) ( ) ( )
( )

1 ( )( )
1 ( )( )c c 0

0

0

0 (8)

2.2. Model based on energy view

According to the classical theory for shear deformation of crystals,
in the above problem, the shear stress τ changes with the shear dis-
placement x as a sine function and becomes zero first at x= b1

2 . The
work required to complete this process is the unstable stacking fault
energy and can be expressed as [1]:

=γ
aGγ
π

8
us

c
2

2 (9)

where γc= ba
1

4 is the ideal shear strain. From Ogata et al.’s [5] study,
the following equation holds:

=τ
kGγ

πc
c

(10)

where k is a material constant. Besides, according to Iskandarov et al.
[16], k is almost temperature-independent. Thus, Eq. (9) can be re-
expressed as:

=γ
aτ

k G
8

us
c
2

2 (11)

It is known that the unstable stacking fault energy of single crystals
decreases as temperature increases. The increase or decrease of quan-
tity of heat of the material is the gain or loss of phonon which results in
the change of temperature and can be quantified by using the specific
heat. The heat energy increase when temperature changes from T0 to T
can be calculated by integrating the specific heat at constant pressure Cp

over this temperature range. Given that the unstable stacking fault
energy γus at the reference temperature T0 is known. Thus, for simpli-
city, γus can be expressed as:

∫= −γ T γ T K C T T( ) ( ) ( )dus us
T

T

p0

0 (12)

where K is the coefficient characterizing the reduction of the unstable
stacking fault energy with increasing temperature. Besides, K can also
be considered as a transfer coefficient between the heat energy and the
unstable stacking fault energy, similar to that shown in Cheng et al.
[11,12]. In addition, for single crystals, the material can still resist
deformation approaching the melting point [11,12] and will become
liquid after absorbing heat energy of ΔHM (melting heat) at the melting
point Tm and thus loses the ability to resist shear deformation. Thus,
applying Eq. (12) at the melting point, K can be determined as:

∫
=

+
K

γ T

C T T ΔH

( )

( )d
us

T
T

p M

0
m

0 (13)

Substituting Eq. (13) into Eq. (12), one obtains:

∫
∫

=
⎡

⎣
⎢
⎢

−
+

⎤

⎦
⎥
⎥

γ T γ T
C T T ΔH

C T T( ) ( ) 1 1
( )d
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T

T
p M T

T

p0 m
0 0 (14)

As shown earlier, Eq. (11) holds at any temperature. In particular, at
the reference temperature, Eq. (11) becomes:

=γ T a T τ T
k G T

( ) 8 ( )( ( ))
( )us
c

0
0 0

2

2
0 (15)

From Eqs. (11) and (15),

=
γ T
γ T

a T τ T G T
a T τ T G T

( )
( )

( )( ( )) ( )
( )( ( )) ( )

us

us

c
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2
0

0 0
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Note that the parameter k has been reduced during the derivation be-
cause of its temperature independence. According to the definition of
the coefficient of the linear thermal expansion (Eq. (7)), Eq. (16) can be
further expressed as:

= + −γ T
γ T

α T T T τ T G T
τ T G T

( )
( )

(1 ( )( ))( ( )) ( )
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us

c
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0
2

0

0
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From Eqs. (14) and (17), the ideal shear strength can be expressed as:

∫

= ⎧
⎨⎩
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2.3. Discussion on the models

Hereto, two temperature-dependent theoretical models for the ideal
shear strength of single crystals have been established. One can see that
the model based on Frenkel's idea (Eq. (8)) relates the temperature
dependence of the ideal shear strength to that of the coefficients of the
linear thermal expansion and shear modulus. The model based on en-
ergy view (Eq. (18)) relates the temperature dependence of the ideal
shear strength to that of the coefficient of the linear thermal expansion,
shear modulus, and the specific heat at constant pressure of materials.
The ideal shear strength at the reference temperature can be calculated
using the AI method. The temperature-dependent coefficients of the
linear thermal expansion, shear modulus, and specific heat at constant
pressure, as well as the melting point and melting heat, can be found in
the literature and materials handbooks. Thus, the theoretical models
can be applied conveniently. Note that phase transition is not con-
sidered above. For that case, the heat of phase transition should also be
included in the equations; see Cheng et al. [11–14].
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