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a  b  s  t  r  a  c  t

Pin-ended  columns  having  an initial  imperfection  in  a second  buckling  mode  and  subjected  to  thermal
loading  have  been  studied  in  this  paper.  Based  on a nonlinear  relationship  between  strains  and  displace-
ments,  the  buckling  equilibrium  equations  are  given  with  the energy  method.  Then  the  formulae  for
the  axial  compression  and  transversal  displacement  are  presented.  The  relationship  between  the  anti-
symmetric  imperfection  and  the axial  compression  has  been  studied  along  with  the  effect  of elevated
temperature  on  the  initial  imperfection.  The  response  of  the  column  in  fire  to the  modified  slenderness
ratio  is investigated.  The  proposed  method  has  the  potential  to provide  more  detailed  information  for
column designs  and thus  be deployed  in  future  research  to minimize  the need  for  expensive  laboratory
testing.
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1. Introduction

The stability of axially-loaded perfect columns is a classical
problem. The classical Euler equation is often used to predict the
elastic buckling loads (Timoshenko and Gere [1], Simitses [2]).
However, the mechanical behavior of steel structures subjected to
fire conditions has received increasing attention in recent years.
General background about the behavior of steel structures at ele-
vated temperatures can be found in many literatures, such as
Buchanan [3] and Wang [4].

The fire resistance of steel columns, which are the main load-
carrying members, has been studied analytically, numerically and
experimentally by many researchers. A finite difference approach
was proposed by Culver [5] to investigate the behavior of wide-
flanged steel columns under elevated temperature. Based on the
experimental results, Poh and Bennetts [6] proposed a numerical
model for the thermal behavior of steel columns. Toh et al. [7]
established a simple analytical method to examine the compres-
sive resistance of steel columns at specified temperature levels. A
number of steel columns subjected to fire conditions were loaded to
their limit states by Yang et al. [8] to check the mechanical behavior
of steel columns in fire. Cai and Feng [9] studied the in-plane elas-
tic buckling of a steel column with under thermal loading. Then

∗ Corresponding author. Tel.: +86 25 8379 5006; fax: +86 25 8379 3150.
E-mail addresses: caijg ren@hotmail.com, j.cai@seu.edu.cn (J. Cai).

Cai et al. [10] also investigated the effects of load-dependent sup-
ports on the thermal behavior of steel columns. Correia et al. [11]
proposed a simplified calculation method for fire design of steel
columns with restrained thermal elongation. Alam et al. [12] stud-
ied the lateral load resistance of non-insulated steel columns under
fire exposure with the finite element method.

It should be noted that the mechanical behavior of steel columns
with imperfections is different from perfect columns. Often the
shape of the imperfection is assumed to be similar to the first
buckling mode (symmetric shape) of the perfect columns [13–15].
However, the imperfection shape of the columns may have the
shape of the second buckling mode (anti-symmetric shape). The
post-buckling of pinned and cantilevered columns with asymmet-
ric imperfections was  studied by Plaut et al. [16]. Rotationally
restrained columns having an initial imperfection in an asymmetric
mode have been studied by Cai et al. [17]. The investigation of the
effects of anti-symmetric imperfections on the thermal behavior of
elastic columns has been quite rarely reported in the literatures.

An accurate and reliable analytical formula to predict the behav-
ior of steel columns subject to elevated temperatures is very
important, because the cost of the full-scale experiments under fire
conditions is high. The objective of this paper is to establish a the-
oretical model for the mechanical behavior of steel columns under
thermal loadings. Moreover, the influence of second-mode imper-
fections on the thermal behavior of steel columns is also studied.
Based on the nonlinear strain–displacement relationship, the prin-
ciple of virtual work is used to establish the nonlinear equilibrium
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Fig. 1. Columns with anti-symmetric imperfections.

equations. The formulae for the axial force and displacement are
also given.

2. Basic theories of columns

A pin-ended column with a second-mode imperfection (anti-
symmetric shape) is shown in Fig. 1. The axis system is selected as
being centroidal with the origin at mid-height of the column. The
relationship between element strains and nodal displacements will
be given firstly. An imperfect column with a small initial curvature
is considered in this paper. All the assumptions for normal slender
columns are satisfied except that the column now has an initial
shape.

The initial curvature based on the second buckling mode of steel
column can be described by

y = a sin
(

2�x

L

)
(1)

where L is the span of the column.
Then the nonlinear strain–displacement relationship for any

point on the cross section of steel columns can be written as

ε = εm + εb = εm + yk (2)

where εm is the membrane strain, εb is the bending strain, and � is
the change in the curvature.

The displacements of any point on the cross section in the ox
and oy directions are denoted as u(x) and v(x), respectively. If the
undeformed length of the column is ds and deformed length of
the column is ds*, then with the assumption of small strains, the
membrane strain of steel columns is given by

εm = 1
2

(ds∗)2 − (ds)2

(ds)2
(3)

where (ds)2 = (dx)2 + (dy)2, (ds∗)2 = (dx + du)2 + (dy + dv)2.
The imperfect columns are assumed that (dy/dx)2 «1 and

du/dx «1, so that Eq. (3) can be expressed as

εm = u′ + g(x)v′ + 1
2

(v′)2 (4)

in which () ’ = d()/dx,  g(x) = 2a�
L cos

(
2�
L x

)
.

For the steel column with a small initial curvature, the bending
strain can be written as

εb = −yv′′. (5)

In addition, the strain produced by the evaluated temperature
�T can be given as

εt = ˛�T  (6)

where εt is the thermal strain, �T  is the temperature increment
relative to its ambient value, and  ̨ is the coefficient of thermal
expansion that is set to 1.2 × 10−5/◦C in this study.

Therefore, the total strain of the column can be obtained as

ε = εe + εt (7)

where εe denotes the mechanical elastic strain, which consists of
two components, the axial strain εem and the bending strain εeb.
All strains are defined as positive in tension. From Eqs. (2)–(7), the
mechanical axial strain and bending strain of steel column can be
given as

εem = u′ + g(x)v′ + 1
2

(v′)2 − ˛�T  εeb = −yv′′ (8)

The differential equations of equilibrium for a pin-ended column
with imperfections under thermal loadings can be obtained with
the principle of virtual work which requires∫ L/2

−L/2

[(EA)eq(ıu′ + g(x)ıv′ + v′ıv′)εem + (EI)eqv′′ıv′′]dx = 0 (9)

for all sets of kinematically admissible virtual displacements ıu
and ıv. In Eq. (9), temperature-dependent cross-section properties
(EA)eq and (EIz)eq are defined as

(EA)eq =
∫

A

E(y)dA, (EIz)eq =
∫

A

E(y)y2dA

where E(y) is the temperature-dependent Young’s modulus at the
coordinate y.

Integrating Eq. (9) by parts leads to

(EA)eqεemıu|L/2
−L/2 −

∫ L/2

−L/2

(EA)eqε′
emıudx + (EA)eqg(x)εemıv|L/2

−L/2

−
∫ L/2

−L/2

(EA)eq((g(x)εm)
′
ıvdx + (EA)eqv′εmıv|L/2

−L/2

−
∫ L/2

−L/2

(EA)eq(v′εm)
′
ıvdx + (EI)eqv′′ıv′|L/2

−L/2 − (EI)eqv′′′ıv|L/2
−L/2

+
∫ L/2

−L/2

(EI)eqvivıvdxv = 0 (10)

in which viv = d4v/dx4.
Then the differential equilibrium equations of imperfect

columns in the axial direction can be derived from Eq. (10) as

−(EA)eqε′
em = 0 (11)

From Eq. (11), it can be found that the membrane strain εem is
constant. It can be written as

εem = − N

(EA)eq
(12)

where N is the actual axial compression in the steel column.
In addition, the differential equilibrium equation of imperfect

columns in the transversal direction can be derived from Eqs. (10)
and (12) as

(EI)eqviv + Nv′′ + Ng′(x) = 0 (13)

For simplicity, the following new parameter is introduced

�2 = N

(EI)eq
, (14)
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