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a b s t r a c t 

Both classic rheological models and fractional derivative models have been widely adopted to model the 

viscoelastic behaviors of materials. In this work, we present a detailed comparison of the performance of 

the generalized Maxwell model and fractional Zener model. We first describe a method to determine the 

parameters of the generalized Maxwell model from the fractional Zener model based on the equivalence 

of complex modulus in the frequency domain of the two models. The two models are then applied to 

investigating the stress response under constant strain rate, stress relaxation, cyclic and random load- 

ing conditions. The simulation results of the two models show excellent quantitatively equivalence. This 

finding can provide insight into choosing the more suitable model for specific conditions. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Viscoelasticity represents that the behavior of materials is in- 

termediate between linear solids and viscous liquid ( Ferry, 1980 ). 

When deformed, most of polymers and biological tissues exhibit 

this time-dependent viscous behavior represented as a stiffer stress 

response at a higher loading rate and a more compliant response 

at a lower loading rate. To understand the origin of viscoelasticity, 

various physical-based models have been proposed ( Rouse et al., 

1953; De Gennes, 1979; Doi and Edwards, 1988; Li et al., 2015 ). For 

example, the Rouse model ( Rouse et al., 1953 ) was used to explain 

the properties of unentangled polymer solutions and melts. The 

reptation model ( De Gennes, 1979; Doi and Edwards, 1988 ) was 

used to explain the relaxation and viscosity of entangled polymeric 

materials. However, for engineering applications, the most widely 

used method to describe the viscoelasticity is based on rheological 

models. 

The viscoelastic rheological models contain the elastic compo- 

nents modeled as springs and the viscous components modeled as 

dashpots ( Ferry, 1980 ). Based on the arrangement of these compo- 

nents, various models have been developed, such as the Maxwell 

model, the Kelvin-Vogit model, the Zener model and more com- 

plex generalized Maxwell model. The generalized Maxwell model 

contains an elastic spring in parallel with multiple Maxwell mod- 

els to represent the relaxation occurring at a broad distribution of 

time. This model has been successfully applied to studying var- 

ious viscoelastic solids ( Del Nobile et al., 2007; Kaufman et al., 
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2008; Yu et al., 2014; Xiao et al., 2015 ). For example, Del Nobile 

et al. (2007) has used the generalized Maxwell model to fit the 

experimental data of five different food matrices. Kaufman et al. 

(2008) has applied the generalized Maxwell model to studying the 

stress relaxation of hydrogels, while Yu et al. (2014) and Xiao et al. 

(2015 ) have employed this model to describe the shape-memory 

behaviors of amorphous polymers. 

Though the classic viscoelastic models can well describe the ex- 

perimental results, they typically involve excessive number of pa- 

rameters. It is shown that the viscoelastic models can be gener- 

alized into fractional derivative models ( Koeller, 1984; Bagley and 

Torvik, 1986; Schiessel et al., 1995 ). In recent years, fractional mod- 

els have been widely adopted in the field of diffusion ( Wu, 2012; 

Wang et al., 2010; Zhao and Sun, 2011 ), heat transfer ( Jiang and 

Qi, 2012 ), chaos ( Baleanu et al., 2015; Wu and Baleanu, 2015 ) and 

nonlocal elasticity ( Tarasov, 2014 ). However, the most extensive ap- 

plication of fractional models still lies in the field of linear vis- 

coelasticity ( Mainardi, 2010 ). The general procedure to obtain the 

fractional viscoelastic model is through replacing the derivative of 

order 1 of the dashpot with the fractional derivative of order be- 

tween 0 and 1. Through this process, various fractional deriva- 

tive models can be obtained, such as fractional Maxwell model, 

fractional Kelvin–Vogit model, fractional Zener model ( Mainardi, 

2010 ) and more complex model as shown in Arikoglu (2014) . These 

models have been widely adopted to describe the relaxation and 

creep behaviors of elastomers ( Di Paola et al., 2011 ) and natu- 

ral materials ( Cataldo et al., 2015 ), dynamic behavior of biologi- 

cal tissue ( Kohandel et al., 2005 ) and other solids ( Rossikhin and 

Shitikova, 2010 ), and visco-elastic Euler–Bernoulli beam ( Di Paola 

et al., 2013 ). In addition, Fan et al. (2015) and Yu et al. (2015) have 
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Fig. 1. Rheological representative of (a) generalized Maxwell model and (b) frac- 

tional Zener model. 

developed numerical algorithm to obtain the model parameters for 

fractional derivative models. Though both rheological models and 

fractional models can be applied to describe the viscoelastic be- 

haviors, limited work has been done to compare their performance 

in detail. 

In this work, we present a numerical study to compare the 

performance of generalized Maxwell model and fractional Zener 

model. The model descriptions are pesented in Section 2 . The fol- 

lowing section describes the procedure of obtaining the model pa- 

rameters of generalized Maxwell model from an approximation be- 

tween the dynamic modulus of the two models. Finally, we com- 

pare the performance of the two models under four different types 

of loading conditions: constant strain rate, stress relaxation, cyclic 

loading and a random loading condition. 

2. Constitutive model 

2.1. Generalized Maxwell model 

The rheological representative of generalized Maxwell model is 

shown in Fig. 1 a, which is composed of a spring to describe the 

equilibrium elastic response and multiple Maxwell elements ar- 

ranged in parallel to represent the viscoelastic response. 

In each Maxwell element, the total strain of the spring ε e 
j 

and 

the dashpot ε v 
j 

should be equal to the strain ɛ in the elastic branch, 

which yields, 

ε = ε e j + ε v j , j = 1 ..N, (1) 

where N is the total number of Maxwell elements. 

The total stress is given by, 

σ = E eq ε + 

N ∑ 

j 

E j ε 
e 
j , (2) 

where E eq is the equilibrium elastic modulus and E j is the modulus 

of the spring in j th Maxwell element. 

The following linear evolution equation is adopted for ε v 
j 
, 

˙ ε v j = 

ε − ε v 
j 

τ j 

, ε v j (t = 0) = 0 , (3) 

where τ j is the relaxation time of the dashpot in j th Maxwell 

element. 

Eqs. (1) –(3) complete the generalized Maxwell model, which 

contains the following parameters: equilibrium elastic modulus E eq 

and viscoelastic relaxation spectrum ( τ j , E j ). 

2.2. Fractional Zener model 

The 1D rheological representative of fractional Zener model is 

shown in Fig. 1 b, which is consisted of an equilibrium elastic 

spring in parallel with a fractional damping Maxwell element. 

Similarly, the total strain in the non-equilibrium branch equals 

to that of the equilibrium branch, which gives, 

ε = ε e + ε v . (4) 

The stress response is given by, 

σ = E eq ε + E neq ε e , (5) 

where E eq is the modulus of the equilibrium elastic spring and 

E neq is the modulus of the spring in the non-equilibrium fractional 

damping Maxwell element. 

The evolution of ε v in the fractional damping element can be 

described as Haupt et al. (20 0 0) , 

d 

αε v 

d t α
= 

ε − ε v 

τα
, ε v (t = 0) = 0 , (6) 

where 
d α( ·) 
d t α

is the Riemann–Liouville fractional derivative with 0 < 

α < 1, which is defined as ( Haupt et al., 20 0 0; Nguyen et al., 2010 ), 

d 

α( f ) 

d t α
= 

1 

�( 1 − α) 

d 

d t 

∫ t 

0 

f (s ) 

( t − s ) 
α ds, f (t = 0) = 0 . (7) 

�( x ) is the Eulerian Gamma function. 

Eqs. (4) –(6) complete the fractional Zener model. 

3. Relaxation spectrum of generalized Maxwell model 

The procedures of obtaining viscoelastic relaxation spectrum of 

generalized Maxwell model from fractional derivative model have 

been discussed in detail in Haupt et al. (20 0 0) ; Nguyen et al. 

(2010) ; Xiao et al. (2013) and Xiao and Nguyen (2015) . Here we 

briefly summarized the main processes. 

The dynamic storage and loss modulus of the two models under 

a small sinusoidal oscillations can be represented as, 

E ′ gene (ω) = E eq + 

N ∑ 

j 

E j ω 

2 τ 2 
j 

1 + ω 

2 τ 2 
j 

, 

E ′ frac (ω) = E eq + 

E neq ((ω τ ) 2 α + (ω τ ) α cos (απ/ 2) 

1 + (ωτ ) 2 α + (ωτ ) α cos (απ/ 2) 
, 

E ′′ gene (ω) = 

N ∑ 

j 

E j ωτ j 

1 + ω 

2 τ 2 
j 

, 

E ′′ frac (ω) = 

E neq (ωτ ) α sin (απ/ 2) 

1 + (ωτ ) 2 α + (ωτ ) α cos (απ/ 2) 
, (8) 

where ω is the angular frequency, E ′ ( ω) denotes the storage mod- 

ulus, and E ′ ′ ( ω) denotes the loss modulus. 

The viscoelastic spectra h ( ν) can be calculated from the com- 

plex moduli E ∗( iω ) = E ′ ( ω ) + iE ′′ ( ω ) using the inverse Stieltjes 

transform ( Christensen, 2003 ), 

E ∗( iω ) 

iω 

= 

∫ ∞ 

0 

h ( ν) 

ν + iω 

dν, (9) 

where ν is the relaxation frequency, which is inverse of the relax- 

ation time. 

The cumulative relaxation spectra are defined as H ( ν) = ∫ ν
0 h ( u ) du, which yields the cumulative spectra of the two mod- 

els, 

H gene (ν) = 

N ∑ 

j 

E j 
〈
ν − ν j 

〉
, 

H frac (ν) = 

E neq 

απ

[
arctan 

(
(ντ ) α + cos (απ ) 

sin (απ ) 

)
− π

(
1 

2 

− α
)]

, (10) 

where 〈 ν − ν j 〉 = 1 for ν ≥ ν j and 〈 ν − ν j 〉 = 0 for ν < ν j . 

A power law distribution of relaxation frequencies is then 

assumed, 

ν0 
j = ν0 

min 

(
ν0 

max 

ν0 
min 

) j−1 
N−1 

. (11) 
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