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a b s t r a c t

The objective of this paper is to model the effect of direct current upon the steady-state creep

of metals. The modeling of this phenomenon has been accomplished in terms of the synthetic

theory of permanent deformation. The constitutive equation of the theory is supplemented

by a term taking into account the passing of DC. Results obtained in terms of this theory show

good agreement with experimental data.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we will discuss the steady-state creep rate

of metals subjected to the passage of electric currents of high

current densities. Researchers studying this phenomenon

report an increase in their steady-state creep rate due to the

passage of DC (Braunovic et al., 2006; Zhao and Yang, 2014;

Kinney et al., 2009; Zhao et al., 2012; Yang and Zhao, 2010;

Sanmartin et al., 1983; Wang-Yun et al., 2015), see Figs. 2

and 3.

The DC effect is suggested to be caused by the following:

(i) DC-induced Joule heating causing a change in local

temperature and resulting in time-dependent plastic

deformation (Chen and Yang, 2008; Chiao and Lin,

2000; Yang, 2009).

(ii) The momentum exchange between moving electrons

and lattice atoms reduces the energy barrier and in-

creases the migration velocity of atoms (Chen and

Yang, 2008, 2010, 2011).

(iii) The intensification of the current field assisted slid-

ing rate and diffusional creep (Kumar and Dutta, 2011;

Shao et al., 2012).
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According to Braunovic et al. (2006), Zhao and Yang (2014)

and Kinney et al. (2009), among the phenomena accompa-

nying the passage of current listed above, the two latter are

dominant.

The influence of current upon irrecoverable deformation

has been registered for such metals and their alloys as cop-

per, nickel, aluminum, tin, etc. (Braunovic et al., 2006; Zhao

and Yang, 2014; Kinney et al., 2009; Sanmartin et al., 1983).

Researches dealing with the DC effect upon creep are mostly

of experimental fashion. Relating the modeling of this phe-

nomenon, we can invoke at least pure phenomenological re-

sult that the creep rate is a linear function of current intensity

(Zhao and Yang, 2014).

This work is focused on modeling the creep behavior of

polycrystalline metals under the simultaneous action of elec-

trical current at a given temperature. The mathematical ap-

paratus we use is the synthetic theory of irrecoverable defor-

mation (Rusinko and Rusinko, 2009, 2011).

The synthetic theory prove oneself to be an effective

and far reaching approach to model various non-classical

problems of irrecoverable deformation such as the influence

of ultrasound upon plastic/creep deformation (Rusinko,

2011, 2014), negative creep observed at step-wise load-

ing (Rusinko, 2012), the effect of preliminary mechanical

thermal treatment upon the steady-state creep (Rusinko,

2012), etc. The main advantage of the theory consist in
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(a) macrodeformation of body is calculated as the sum of

microdeformations thereby accounting for the processes

developing on its microlevel and (b) microdeformation is

directly related to the main carries of deformation, defects

of the crystalline structure of material.

To test the synthetic theory we construct plots for the

steady-state creep of tin, whose plastic deformation (Yang

and Li, 2007; Hamada et al., 2010) has already been modeled

in Rusinko (2015). This metal was singled out of others be-

cause it is employed in many ways: as solder for joining pipes

or electric circuits (Abtew and Selvaduray, 2000), pewter, bell

metal, babbit metal and dental amalgams. The niobium–tin

alloy is used for superconducting magnets, tin oxide is used

for ceramics and in gas sensors (as it absorbs a gas its electri-

cal conductivity increases and this can be monitored).

2. Synthetic theory

The synthetic theory is based on the Batdorf–Budiansky

slip concept (Batdorf and Budiansky, 1949) and the Sanders

flow theory (Sanders, 1954) and deals with small irrecover-

able (plastic/creep) deformations of hardening materials. Its

detailed description can be found in (Rusinko and Rusinko,

2009, 2011); here, we outline only central tenets and equa-

tions of the synthetic theory needed for further calculations.

The modeling of irrecoverable deformation takes place

in the three-dimensional subspace (R3) of the Ilyushin five-

dimensional space of stress deviators, R5, (Ilyushin, 1963).

The loading process is expressed by a stress vector, S̃, whose

components are converted from the stress deviator tensor

components – Sij (i, j = x, y, z) – as follows (Rusinko and

Rusinko, 2009, 2011):

S̃

[√
3/2Sxx, Sxx/

√
2 +

√
2Syy,

√
2Sxz

]
∈ R3 (1)

Permanent deformation at a point of body is expressed

via strain vector which is defined as

ẽ =
∫
α

∫
β

∫
λ
ϕNÑdV , dV = cos βdα dβ dλ. (2)

Its components are converted to the strain-deviator ten-

sor components, eij (i, j = x, y, z), as

e1 =
√

3/2exx, e2 = exx/
√

2 +
√

2eyy, e3 =
√

2exz. (3)

In Eq. (2), ϕN is a strain intensity, which is an average mea-

sure of plastic slip developing within a microvolume (slip

system, V0). Eq. (2) states that plastic/creep deformation at

a point of body (macrodeformation) is a sum of slips within

microvolumes (microdeformation) composing the point of

body which is assumed to be an elementary volume (V),

V = �V0.

Slip systems are presented/modeled by tangent planes

drawn through every point of yield surface in R5. Since

the analysis of five-dimensional figures is extremely compli-

cated, we work with the projection of the five-dimensional

yield surface on R3, which is a sphere of radius
√

2/3σP and

corresponds to the von-Mises yield criterion,

S2
1 + S2

2 + S2
3 = 2/3σ 2

P , (4)

where σ P is a creep limit of material in uniaxial tension. The

location of a plane in R3 is established via unit normal vector

Ñ(α,β, λ) and the distance to the plane, HN.

According to Sanders (1954), in a virgin state, the sphere

(4) can be thought of the inner envelope of equidistant tan-

gent planes. To establish a hardening rule, Sanders extended

the provision that a surface can be constructed as an inner

envelope of planes to the case of loading as well. In the course

of loading, the vector S̃ displaces on its endpoint a set of

planes from their initial position, i.e. from sphere (4). The dis-

placement of plane on the endpoint of stress vector symbol-

izes the development of plastic microdeformation within the

slip system.

The distance to a plane characterizes the degree of the

hardening of material. Indeed, the greater the HN is, the

greater the stress vector will be needed to reach the plane,

i.e. to induce plastic shift within the corresponding slip sys-

tem. The condition that a plane is located at the endpoint of

stress vector is

HN = S̃ · Ñ = S1N1 + S2N2 + S3N3. (5)

To reflect the well-known fact that a plastic flow of mate-

rial is accompanied by the nucleation, multiplication, move-

ment and interaction of the irregularities of crystalline grid

(dislocations, point defects, twins, etc.), we introduce defect

intensity: an average measure of the defects (ψN) formed

during plastic deforming within V0

H2
N = ψN + 2/3σ 2

P . (6)

The strain intensity within one slip system (ϕN) is related

to the defects intensity (ψN) and time (t) by the following dif-

ferential equation (Rusinko and Rusinko, 2009; Rusinko and

Rusinko, 2011):

dψN = rdϕN − KψNdt, r = const, K = K(	,σeff). (7)

This formula tells us that the number of defects is gov-

erned by two processes: it grows due to an increase in ir-

recoverable straining (dϕN) and simultaneously decreases

(undergoes relaxation) in the course of deforming (−KψNdt).

Depending on loading- and temperature regime one of the

term in (7) can dominate over another, or both of them may

manifest itself.

For the case of steady-state creep, when S = const , Eqs.

(5)–(7) give that

ϕ̇N = K

r
ψN = K

r

(
(S̃ · Ñ)

2 − 2/3σ 2
P

)
= const, (8)

K = K1(	)K2

(
σeff

)
, K1(	) = exp

(
− Q

R	Tm

)
,

K2

(
σeff

)
= 9

√
3cr

2
√

2π
σ k−2

eff
, (9)

where r, c and k are model constants; 	 and σ eff are the ho-

mology temperature and effective stress, respectively. As we

can see the function K2 is consonant with the Bailey–Norton

law (power law creep) and, thus, follows its logic about the

effect of power index (in our case it is k) on the creep defor-

mation.

For the case of uniaxial tension (S1 =
√

2/3σx, N1 =
cos α cos β cos λ; Rusinko and Rusinko, 2011; Rusinko, 2011)

Eq. (2) gets

ė1 = 2K

3r

∫ α1

−α1

∫ β1

−β1

∫ λ1

0

[
(σx cos α cos β cos λ)

2 − σ 2
P

]
× cos αcos2β cos λdα dβ dλ. (10)
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