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a  b  s  t  r  a  c  t

This paper  focuses  on  developing  a framework  for determining  the  optimal  pseudo-rigid-body  (PRB)
model  of 2D  cantilever  beams.  PRB  models  are commonly  used  in design  and  analysis  of  compliant  mecha-
nisms  since  they  significantly  reduce  the  number  of degrees  of freedom  compared  with  the  finite  element
approach.  Although  a number  of  PRB  models  are  available  in  literature,  there  is not  a unified  method  to
determine  the  most  suitable  pseudo-rigid-body  model  for a specific  application.  In this  work,  we  first
study  a modified  Timoshenko  beam  equation  which  accommodates  shear  forces  and  axial  deformation.
The  numerical  solution  to the  Timoshenko  beam  equation  provides  a baseline  for  comparing  various
models.  A  novel  concept  of  “PRB  matrix”  is  proposed  for representing  topologies  of  all  PRB  models  in  a
uniform  way.  The  optimal  set  of  kinematic  parameters  (characteristic  lengths  and  spring  constants)  of
PRB models  are  determined  by  minimizing  the  error of tip deflection  and  comparing  with  the  solution  of
the  Timoshenko  beam  equation.  To validate  this  formulation,  we  compare  the results  with  existing  PRB
models  and  obtained  equivalent  if not  a more  accurate  set  of  PRB  parameters.  At  last,  a case  study  of  a
compliant  slider  mechanism  is  provided  to  demonstrate  the  accuracy  of two PRB  models  in this  particular
application.

© 2014  Elsevier  Inc.  All  rights  reserved.

1. Introduction

Compliant mechanisms provide designers the option of replac-
ing rigid-body linkages with flexible members. This lends intrinsic
spring-like characteristics, which can be very useful for control,
especially in robotics applications. Such robots provide great pre-
cision and control, and using varying stiffness and damping, the
designers can achieve stability [1]. Compliant mechanisms are also
widely used in micro-electro-mechanical-systems (MEMS) and
other micro-scale applications [2]. However, design of compliant
mechanisms can be a difficult process due to the nonlinearities aris-
ing out of their deflections. This places a great emphasis on the need
to improve the methods of analysis. With a better understanding of
behavior of compliant elements and enhancing the tools for anal-
ysis, there will be a significant advancement in the use of these
mechanisms.

Compliant mechanisms have been studied in great detail over
the past couple of decades. Over the course of this time, different
methods have been suggested for the analysis of compliant mech-
anisms. One approach has been to use topological methods, which
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use continuum synthesis [3–5]. Another method is the beam con-
straint model proposed by Awtar et al. [6]. Although it provides a
closed form solution and takes into account the effects of load stiff-
ening and other nonlinearities, it assumes small deflections. A third
approach, which will be discussed in this paper, is to use kinematic
models for analysis and design. This approach replaces flexible
elements with rigid-body replacements, which simplifies the equa-
tions. Such a kinematic model is called a pseudo-rigid-body (PRB)
model [7,8]. Since rigid-body kinematics are well studied, the PRB
approach is usually more intuitive for the purpose of analysis and
design. However, care needs be taken to ensure that the model is
accurate in replicating the behavior of the flexible members.

Most of the early work on PRB models used only one indepen-
dent revolute joint. Even the ones with more than one joint were
symmetrical [9]. Dado [10] developed a variable parametric model.
However, these models are load dependent, which makes them
inconvenient for design and synthesis in which the load to the
beam tip is unknown. Su [11] suggested a load independent 3R
model in which the parameter values do not change with the load-
ing conditions, which was  found to be highly accurate for beam like
structures. Chen et al. [12] used a particle swarm optimizer to sug-
gest better values for the parameters. But this model may  be too
complex for simple elements, leading to increased computational
cost. Recently, Yu et al. [13] proposed a 2R model that reduces the
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[�]  General PRB matrix
[J] Jacobian matrix
˛x Dimensionless force in the x-direction
˛y Dimensionless force in the y-direction

 ̌ Dimensionless moment in the z-direction
� Deflection of extension spring
� Initial characteristic length of the segment
� Shape factor of cross section for shear
� Poisson’s ratio
� Tip deflection angle
� Deformation of torsion spring
�	 Internal forces and moments in the PRB
�F Load on the beam tip
A Area of cross section
a x coordinate of beam tip
b y coordinate of beam tip
E Elastic modulus of the material
G Shear modulus
I Second moment of area
K� Stiffness of torsion spring
k� Dimensionless parameter for stiffness of torsion

spring
Kex Stiffness of extension spring
kex Dimensionless parameter for stiffness of extension

spring
L Length of the beam
N Number of segments in PRB model
t0 Thickness of the beam
w0 Width of the beam

complexity of the 3R PRB model while maintaining a similar level
of accuracy. Another method for using PRB models with revolute
joints was suggested by Pei et al. [14]. Some models also use pris-
matic joints with extension springs, such as the one presented by
Saxena and Kramer [15] or Vogtmann et al[16].

As mentioned in the previous paragraph, one of the major draw-
backs of most of these models is the dependence of the parameters
on the loading direction. Although this is useful for static analy-
sis, where the loads and boundary conditions are known, it makes
these models difficult to use for dynamic simulations or mecha-
nism synthesis. Load independent models are more useful for these
cases. Since compliant mechanisms usually have a limited range of
motion, the models only have to be accurate within the expected
range of loading or deformation. It may  also be important to have
model parameters based on the type of deformation expected.

The required accuracy and kinematics of the PRB model also
depend on the application. It may  be useful to develop a model on
a case to case basis after studying expected deformation, required
accuracy and other application requirements. With this in mind,
we can make a strong argument for a general PRB model that can
adapted for each case. The model can be modified to be simple or
complex based on the demands of the application. Since the design
process generally involves multiple evaluations, a simple model
with minimum parameters would be suitable for this. For analysis,
the user may  be better served having a complex model that captures
all the characteristic behavior of the compliant element.

The rest of the paper will follow the development of a general
PRB model, which can be adapted to different scenarios. Many pos-
sible permutations of this model will be looked at, and the accuracy
and complexity of each of them tabulated. This methodology will
also be used to prove the validity of existing PRB models and sug-
gest minor modifications that lead to better results. The concept
of a PRB matrix will be introduced, along with a discussion on its
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Fig. 1. Cantilever beam with end loads.

interpretation. We  will also look at a direct approach to finding
the values of the parameters based on an optimization algorithm.
Finally, a simple procedure will be suggested that leads the user
to the most effective PRB model for each situation based on avail-
able data. For validation, a case study involving a simple compliant
slider mechanism will be presented. But first, a numerical approach
to solving a beam equation for highly elastic materials based on the
Timoshenko beam thoery will be discussed.

2. Timoshenko beam model

While working with soft polymers with rubber-like properties,
it was seen that axial deformation contributes significantly to the
loading behavior of the part. Many soft joints have been fabricated
using these materials with the Shape Deposition Manufacturing
(SDM) [17] approach. In order to improve analysis of these joints, it
was necessary to take into consideration the elongation and Pois-
son’s effect. The parameters of the PRB model are determined based
on the expected behavior of the compliant elements. There are
many ways to ascertain the deformation of the compliant mem-
bers, such as experiments or FEA simulations. Another approach
is to model them as beams and use beam theory to determine the
deflection and orientation, for which a suitable beam model is to
be selected. This section describes a modified Timoshenko beam
model we used for the calculations.

Timoshenko [18] developed a theory for the analysis of short
beams which takes into account shear deformation and rotational
inertia effects, which makes it a comprehensive approach for small
applications. Generally, the model is derived in terms of the hor-
izontal variable x, which means that it is valid only for small
deformations. However, for rubber like materials which are used
extensively in compliant mechanisms, large deformation analysis
is necessary. To deal with this, the independent variable x can be
changed to s, which is the length along the curve of the beam. The
model also takes into account the Poisson effect, and includes the
change in cross section that occurs due to the same. See Fig. 1.

Consider a cantilever beam with of length L and a rectangular
cross section of width w0 and thickness t0. When it is subject to a
general Fx, Fy and Mz at its free end, it is deformed to a shape with
x(s), y(s), �(s) defining the coordinates and the slope angle of the
beam at any point 0 ≤ s ≤ L on the beam.

The axial force, shear force and bending moment of the beam
are given by P(s), V(s) and M(s), written as

P(s) = Fy sin �(s) + Fx cos �(s) (1)

V(s) = −Fy cos �(s) + Fx sin �(s) (2)

M(s) = Mz + Fy(a − x(s)) − Fx(b − y(s)) (3)

The axial elongation of the beam is represented using the fol-
lowing two  equations.

dx

ds
=

(
1 + P(s)

EA

)
cos �(s) (4)

dy

ds
=

(
1 + P(s)

EA

)
sin �(s) (5)
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