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a  b  s  t  r  a  c  t

The  differences  between  the transmission  characteristics  of  the  standard  cubic  spline  filter  and  the  Gauss-
ian filter lead  to different  evaluation  results  even  for the  same  profile.  There  is indeed  an  adverse  impact
on  the  comparison  of measurement  results  and  the  applications  of  the  related  international  standards.  A
novel high-order  spline  filter  is  proposed  to  resolve  this  practical  problem  of approximating  the  Gauss-
ian  filtering  characteristic.  The  design  of  the new  filter  is  based  on  an improved  variational  approach
by  adding  the  high  order  derivative  terms  to the  bending  energy  part whose  structural  parameters  are
determined  by  the  aid of  the  universal  Taylor  series,  so  as to  realize  the  convergence  to  the  function  of
the  Gaussian  filter.  In  addition,  a cascade  algorithm  in  terms  of  the  low-order  filters  is also  developed  in
order  to ensure  stable  performance  of  the high-order  filter.  Its  effectiveness  and  application  were  verified
by the  experiments.

© 2014  Elsevier  Inc.  All  rights  reserved.

1. Introduction

A profile filter is a mechanical, electrical (analog) or digital
device or process which is used to separate the roughness profile
from finer fluctuations and from the waviness profile or to separate
the waviness profile from the roughness profile. Profile filters with
long-wavelength cutoff provide a smooth mean line to a measured
profile, thus providing a suitable, modified profile for the calcula-
tion of parameters of roughness or waviness with respect to the
mean line [1].

In the past 30 years, the profile filters have evolved from
mechanical devices or analog processes to digital filters, and finally
the international standard 2RC filter has been replaced by the
Gaussian filter and the spline filter [2–5]. As a phase correct filter,
the Gaussian filter has become the most widely used profile filter.
It is recognized as an optimal filter because of its zero-phase char-
acteristic and its minimum product of time width and frequency
width [6]. However, the Gaussian filtering algorithm is always dis-
turbed by serious distortions (end effects), because of which the
profile ends or area image boundaries cannot be included in an
assessment subsequent to the filtering process [7]. In order to over-
come this disadvantage, the spline filter was proposed by Krystek
as a complementary method for the Gaussian filter [8,9]. Distinct
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from other filters using the convolution algorithm, the spline fil-
ter is implemented in terms of the matrix factorization algorithm
[8–11]. The novel algorithm can not only improve the filtering effi-
ciency, but also alleviate significantly end effects with the optional
boundary condition applied for different profiles. Owing to these
advantages, the spline filter was adopted as a standard profile filter
of ISO 16610-22 in 2006 [4].

According to various parts of international standard ISO 16610,
the Gaussian filter and the spline filter both can be used to establish
the mean line for engineering surface evaluation. However, their
different transmission characteristics inevitably determine differ-
ent filtered results and different mean lines. The matter may also
impact the comparison of measurement results and the application
of the 16610 standard. To solve this problem, various methods have
been developed as substitutes for both spline and Gaussian filters.
These include the cascade spline filtering algorithm [12] and the
fractional spline algorithm [13]. All of these filters have the sim-
ilar transmission characteristics to the Gaussian filter’s. However,
from a proof in Ref. [12], we also know that these algorithms cannot
realize the unification of the standard profile filters, because their
convergent results always yield an approximation error of at least
0.3% to the standard Gaussian filtering characteristic [2,3]. In addi-
tion, these cascade algorithms may  exacerbate the end distortion
in some way.

In this paper, a novel high-order spline filter based on an
improved variational principle is proposed. Its transmission char-
acteristic determined by referring to the standard Taylor series, can
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approximate that of the Gaussian filter with high accuracy. More-
over, the filter is carried out with the low-order cascade algorithm
[10] so as to ensure its stable application.

2. High-order spline filter

Based on the classical variational principle [10,12], the high-
order spline filter for a profile is defined as the following functional
minimization procedure:
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2

+
∫ xN

x1

[
�1

(
ds(x)

dx

)2
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× dx → Min  (1)

where yi are the measured profile data with a constant sampling
interval �x,  s(x) is the output profile, i is the index of a point in the
dataset and N is the total number of measured data points. In Eq. (1),
the first component is supposed to guarantee that the mean line s is
to approximate the profile y. The second component called bending
energy is to ensure appropriate smoothness of the filtered result
[14–16]. Different from the traditional spline filter, the variational
function is improved by adding the high-order derivative terms to
the bending energy part. Here, �1, �2, . . .,  �n are the regularization
parameters to control the compromise between the fidelity and
the smoothness of the data. In the case of regularization, the entire
solution process of Eq. (1) is equivalent to filtering the data with a
low-pass filter. Generally, n + 1 is defined as the order of the filter.

The digital approximation of Eq. (1) may  be written as

ε =
N∑

i=1

(yi − si)
2

+
N∑
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[�1(∇si)
2 + �2(∇2si)

2 + · · · + �n(∇nsi)
2] → Min  (2)

where each order derivative of s(xi) is approximated with finite
differences, � is the difference operator, s(xi) is denoted by si, and

∇msi =
m∑

k=0

{(−1)kCk
m · si+�m/2�−k} (3)

where Ck
m are coefficients.

As discussed in Refs. [10,12], the solution to the variational func-
tion of Eq. (2) is obtained by the matrix factorization algorithm, and
the essential matrix equation can be written as

(I + Q )S = Y (4)

where I is the identity matrix, Y is the vector of sampled data values,
S is the vector of output data values. In practice, the matrix equation
is derived by performing the partial derivative operation to si. The
coefficient matrix Q is different according to the different boundary
condition, which may  be classified as periodic or non-periodic [4].

For periodic data, the boundary condition is given by

si = si+N (5)

But, for most instances, the non-periodic boundary is

∇ns1 = ∇nsN = 0 (6)

3. The transmission characteristic of the high-order spline
filter

Let us now consider Eq. (4) in more detail for the case of a peri-
odic boundary condition, where the partial derivative operation
with respect to si may  be written as

∂ε

∂si
= −2(yi − si) + [−2�1(∇2si)

+ 2�2(∇4si) + · · · + (−1)n2�n(∇2nsi)] = 0 (7)

Using Eq. (7), in the z transform domain [17], we can deduce the
transfer function of the high-order spline filter G(z). Here, the z
transform of �2 is equal to (z − 2 + z−1), thus the z transform of �2n

can be expressed as (z − 2 + z–1)n. Deriving the ratio of output to
input and replacing the difference operators with (z − 2 + z−1)n in
the z transform domain, we  can get the following equation

G(z) = 1

1 − �1(z − 2 + z−1) + �2(z − 2 + z−1)2 + · · · + (−1)n�n(z − 2 + z−1)n
(8)

Replacing the factor z by exp(−jω), Eq. (8) yields

G(ω) = 1

1 + k1(1 − cos ω) + k2(1 − cos ω)2 + · · · + kn(1 − cos ω)n

(9)

where k1, k2, . . .,  kn are defined as the structural parameters and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1 = 21�1

k2 = 22�2

...

kn = 2n�n

(10)

Eq. (9) describes the transmission characteristics of the high-order
spline filters with arbitrary order. Also, note that the structural
parameters are the keys to determine the characteristics. It implies
that we  have to find a multivariate algorithm to determine these
parameters and their corresponding characteristics. Therefore, a
comparison method based on the Taylor series is developed.

Firstly, taking into account the function ex, the Taylor series is
given as

ex = 1 + x + x2

2!
+ · · · + xn

n!

Similarly, the transmission function of the Gaussian filter can be
expanded to

e−�(˛(lc/l))2 = 1

e�(˛(lc/l))2

= 1

(1 + �˛2(l2c /l2) + �2˛4l4c /2!l4+· · ·+�n˛2nl2n
c /n!l2n)

(11)

where l and lc are the numbers of data in the wavelength � and the
cut-off wavelength �c respectively. In addition,  ̨ =

√
ln 2/� [1].

Secondly, with the aid of the Taylor series again, we  have

1 − cos ω = ω2

2!
− ω4

4!
+ · · · − (−1)n ω2n

(2n)!

where the digital angular frequency � is equal to 2�	x/� for the
spatial signal. By defining � = l	x, then ω = 2�/l, Eq. (9) can be writ-
ten as

G(l) = 1
1 + (r1/l2) + (r2/l4) + · · · + (rn/l2n)

(12)

where rn are the polynomial coefficients about kn.
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