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a  b  s  t  r  a  c  t

An  increasing  amount  of  commercial  measurement  instruments  implementing  a wide  range  of measure-
ment  technologies  is rapidly  becoming  available  for dimensional  and  geometric  verification.  Multiple
solutions  are  often  acquired  within  the  shop-floor  with  the aim  of providing  alternatives  to cover  a wider
array  of  measurement  needs,  thus  overcoming  the limitations  of individual  instruments  and  technologies.

In such  scenarios,  multisensor  data fusion  aims  at going  one  step  further  by  seeking  original  and  dif-
ferent  ways  to analyze  and  combine  multiple  measurement  datasets  taken  from  the  same  measurand,  in
order  to  produce  synergistic  effects  and  ultimately  obtain  overall  better  measurement  results.

In this  work  an  original  approach  to multisensor  data  fusion  is  presented,  based  on the  development  of
Gaussian  process  models  (the  technique  also  known  as  kriging),  starting  from  point  sets acquired  from
multiple  instruments.  The  approach  is illustrated  and  validated  through  the  application  to  a  simulated  test
case and  two  real-life  industrial  metrology  scenarios  involving  structured  light  scanners  and  coordinate
measurement  machines.

The  results  show  that  not  only  the  proposed  approach  allows  for obtaining  final  measurement  results
whose  metrological  quality  transcends  that  of  the  original  single-sensor  datasets,  but  also  it allows  to
better  characterize  metrological  performance  and  potential  sources  of  measurement  error  originated
from  within  each  individual  sensor.

© 2014 Elsevier  Inc.  All  rights  reserved.

1. Introduction

1.1. Multisensor instruments for dimensional metrology

The combined use of multiple measurement sensors is becom-
ing commonplace in dimensional metrology and an increasingly
wider array of instruments equipped with multiple probes is
becoming available. Popular commercial solutions for the measure-
ment of parts include touch-probe CMMs  equipped with additional
optical and/or vision sensors [1–4], and measuring arms equipped
with touch-probes and laser point or line scanners [5,6]. Even in
surface metrology, where the aim is the characterization of sur-
face texture at micro and sub-micro scales, 3D microscopes have
recently become available equipped with multiple measurement
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heads implementing different measurement technologies (e.g. ver-
tical scanning interferometry + focus variation [7]).

All such commercial offerings are based on the same conceptual
approach: “one fixture, multiple sensors”, i.e. all these instruments
are designed to provide multiple measurement options within a
single measurement setup, essentially letting the user select the
proper sensor for each task, thus overcoming the limitations of each
single measurement technology. Once the workpiece is mounted
onto the instrument, depending on the type of characterization,
part accessibility, time and accuracy requirements, the user is free
to select the probe/sensor technology that is better suited to accom-
plish the inspection/verification task.

1.2. Multisensor data fusion

Multisensor data fusion tries to go one step further [8–13], and
refers to the process of combining multiple sensor data sets with
the goal of obtaining a result which either marks an improve-
ment with respect to what obtainable from each data set taken
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singularly, or constitutes an entirely new piece of information,
which could not be obtained by simply analyzing any of the indi-
vidual datasets.

In multisensor data fusion, it is not necessary that all the datasets
come from the same instrument, and data may  have been acquired
at different places and times. Combining multiple data sets may
refer to combining data coming from different sensors and/or sen-
sor types, but may  also refer to combining data coming from the
same sensor, used with different setups, or even used multiple
times with identical operating conditions (i.e. combining replicate
data sets).

Data types, which can be integrated in dimensional metrology,
include:

- conventional digital images (RGB, gray scale): as acquired by dig-
ital cameras;

- range images (images whose pixels contain distance informa-
tion): as acquired by structured light scanners, 3D microscopes
and photogrammetry systems;

- point clouds (i.e. set of points in 3D space): as acquired by CMM,
measuring arms, single-point laser trackers, laser radar, etc., and

- volume data (i.e. 3D matrices): as acquired by X-ray Computer-
ized Tomography.

In general, the term homogeneous integration is used when
combining the same type of data (e.g. 3D point clouds), while inho-
mogeneous integration is used in all the other cases.

Depending on the type of data to be integrated and on the over-
all characterization goal, many multisensor data fusion scenarios
may  be imagined; these can be categorized into three main classes
according to a popular classification scheme [14]. In competitive
data fusion,  redundancy originated by replicate data sets acquired
with the same sensor and in the exact same operating conditions
is used to improve the metrological quality of the result. For exam-
ple, multiple identical images of the measurand can be combined
in order to extract an average image, more robust to noise. In com-
plementary data fusion,  homogeneous data sets, taken by the same
sensor but in slightly different operating conditions, provide infor-
mation so that each set is meant to complement the others. Fusion
in this case is meant to take advantage of such complementar-
ity. For example, digital images with the same magnification but
slightly different localization may  be stitched to obtain increased
spatial coverage, or images taken at different magnification could
be fused to obtain a result that covers a wider array of spatial reso-
lutions (scales). Finally, cooperative data fusion gathers all the types
of integration involving homogeneous/inhomogeneous data sets,
which cannot be classified under competitive or complementary
integration. A few scenarios of cooperative data fusion have already
gained some popularity [9]: in dimensional and geometric verifica-
tion, vision can be used to acquire global shape information needed
to automatically produce an inspection path for the touch probe;
in defect identification vision can be used to identify and local-
ize a defect, then localization information can be used to drive a
laser line scanner which performs the actual shape measurement
of the defect; in reverse engineering, high-density point clouds
obtained by an optical sensor can be stitched together with the
help of a few reference points obtained by a touch probe to recon-
struct the full-3D shape of an object. Some sensor technologies are
intrinsically based on some form of cooperative integration [9]: for
example, depth from focus, shape from shading and photogram-
metry are 3D imaging technologies, which are based on fusing data
obtained from conventional 2D images in order to obtain 3D infor-
mation.

1.3. An overview of some notable approaches to multisensor data
fusion

Some of the cooperative scenarios cited above can also be clas-
sified as sequential data fusion, an additional category where the
first dataset is used to obtain the second, and then it is discarded.
For example, in Ref. [12] high-density, low-quality information
acquired by means of a vision system is used to guide the acquisi-
tion of a low-density, high quality dataset via a touch probe CMM.
The dataset obtained by vision is discarded after the CMM dataset
is available. An approach where both datasets are kept can be found
in Ref. [15], where a laser scanner is used to acquire free-form sur-
face patches, while a CMM  is used to acquire patch boundaries only.
Fusion is achieved by simply adding the two  datasets together.

Fusion is also meant as a way to define the appropriate com-
pensation (i.e., a roto-translation matrix) to be applied to a sensor
to achieve information provided by the other one [16]. As in many
applications of data fusion, this approach assumes that all the sen-
sors acquire data at the same locations, an assumption that usually
does not hold when measurement systems based on high-density
optical scanning are considered.

In Ref. [17] a method is proposed for fusing high-resolution and
a low-resolution data: after registration and elimination of redun-
dant points, merging is achieved by remeshing all the acquired data
points. No statistical models to represent measurement errors are
considered in the merging procedure. On the contrary, in Ref. [18]
the datasets acquired by different sensors are considered as differ-
ent responses of a multivariate linear (or non-linear) model, and
Bayesian estimates of the unknown coefficients are carried out.
The statistical model is used specifically to correct laser trackers
responses; the same locations are measured with all the available
sensors (or multiple times by the same tracker) in order to compute
the fusion step.

Most of the aforementioned approaches for data fusion either
combine information by simply adding data points originated from
different observations (after appropriate elimination of redundant
data) or, assuming points are taken at the exact same locations, use
one dataset to correct the other. Furthermore, most of the methods
assume deterministic data fusion or statistics as a way  to estimate
unknown coefficients. A notable exception is the method presented
in [19], aimed at multisensor data alignment. In this case, the main
idea is to reconstruct the information provided by all the different
sensors before performing the fusion step. This approach has the
main advantages of (i) include statistical modeling while recons-
tructing the information provided by different data sets, providing
prediction intervals for the local discrepancies between different
data sets as well as on the final prediction of the shape at any given
location; (ii) relaxing the assumption of acquiring all the data at the
same location set. This approach is considered as starting reference
for the fusion procedure presented in this work.

1.4. Multisensor scenarios involving 3D point sets with different
densities and metrological performance

The specific data fusion scenarios investigated by this work
involve multiple 3D point sets (point clouds, i.e. homogeneous data)
acquired from the same measurand surface as part of an inspec-
tion/verification process [20].

In these scenarios, the datasets are supposed to belong to one
of the two  following main categories:

- Points coming from touch-probe CMMs:  In a conventional CMM,
point acquisition is generally very slow (acquisition in single
point mode), or slightly less so (acquisition in profile mode); the
localization of the points on the measurand can be accurately con-
trolled by the operator, and variable point spatial density on the
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