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a  b  s  t  r  a  c  t

In this  paper  we  discuss  new  type  of  surface  anti-plane  waves  localized  near  the  surface  an  elastic  half-
space  and  in  the  vicinity  of plane  interface  between  two  half-spaces,  when  considering  surface  strain  and
kinetic  energies.  We  also  consider  the  case  of  non-perfect  interface,  i.e. when  a jump  of  displacement  or
of its  gradient,  with  the aim of  modelling  lacking  of adhesion  between  solids.  The phase  velocity  profiles
and  dispersion  relations  of surface  waves  are  presented  and several  different  material  parameters  are
considered.  Among  the  results,  we  observe  an  anomalous  dispersion  when  the  surface/interface  is  stiffer
than  the bulk material.  These  results  can  be exploited  for the  nondestructive  characterization  and  the
analysis  of  thin  inter-phases  between  two  solids,  and can  find  several  engineering  applications.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Surface and interfacial waves, i.e. waves whose amplitude
decays exponentially with distance from the surface or interface,
are well known for being an important subject of study in mechan-
ics [1–3]. The main reason is that as waves propagate, they carry
information about geometry and mechanical properties of the
media. Their peculiar features are indeed studied and exploited
in different fields, mainly seismology, signal processing or nonde-
structive evaluation.

The most well known example of surface wave is the Rayleigh
wave, which propagates near the free interface of an elastic solid.
This wave is not dispersive, i.e. its phase velocity does not depend on
the frequency. More complex is the case of Stoneley waves, which
may  exist near the interface separating two elastic halfspaces, or
they always exist at the interface between a solid and a fluid. In the
latter case, when phase velocities of the two media fulfil specific
condition, a Leaky-Rayleigh wave can exist. The specific feature of
a Leaky-Rayleigh wave is that it is attenuated in the direction of
propagation, i.e. along the surface/interface, due to the fact that
some amount of energy is leaking into the fluid. All these surface
waves have something in common: the displacement vector field
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always belongs to a plane perpendicular to the surface, namely the
sagittal plane. Using a well known formalism, we can say that only
Pressure (P-) waves and Shear Vertical (SV-) waves are involved.
In fact, this kind of surface waves can be seen as the result of a
particular linear combination of two  aforementioned solutions of
the elastodynamic problem when a wavenumber matching occurs.
In all cases of free halfspace, solid–solid or solid–fluid interfaces,
no surface waves are associated to what are called anti-plane (AP-
), also known as Shear Horizontal (SH-) waves, which are polarized
perpendicularly with respect to the sagittal plane.

Following the literature, in order to observe such surface waves,
we need to extend the analysis to layered media, and consider for
instance an additional layer covering the free surface of the solid, or
separating the two  solids. These results are historically related to
seismic waves and were initially developed for characterizing the
layer structure of the Earth [4]. In this case we  can observe the so
called Love waves.

In this work we  will consider solids separated by a thin inter-
facial layer represented by a 2D surface with associated elastic
properties. This configuration is of great interest in several engi-
neering applications, and it is particularly suited for modelling
solids separated by a softer thin elastic layer. We  study antiplane
waves localized near half-space free surface or near plane inter-
face between solids. The classic analysis of antiplane waves can be
found for example in [1], waves in solids with surface stresses are
analyzed in [5–8]. The crucial point of the surface/interface elastic-
ity is the formulation of constitutive equation for surface/interface
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strain energy. Direct approach to the formulation of such consti-
tutive equation is given by Gurtin and Murdoch [9], Steigmann
and Ogden [10]. Asymptotic derivation of the interface properties
using thinness of the interface is given for example in [11] where
other references can be found. Let us note that as in the theory of
shells, asymptotic approach requires certain assumptions such as
homogeneity or isotropy of thin interface layer as in [11]. More
complex microstructured interface models were considered in
[12,13] with focusing on the waves propagation. Such microstruc-
tured interfaces may  be interesting for example for design of
acoustic metamaterials, see also recent review [14]. For structured
interfaces more complex compatibility conditions across the inter-
face appear related to stiff and soft models of interface. Influence
of initial stresses in interface on the wave propagation is analyzed
in [15,16]. Recently, analysis of antiplane waves in piezoelectric
materials is given in [17,18]. Within the framework of the second
gradient elasticity SH surface waves are studied in [19,20].

One possible application of the present study is the character-
ization of the properties of the interphase between bone and an
implant right after surgery. Indeed, this interphase is constituted
by a thin newly formed bone, which is softer that mature bone
and whose mechanical properties play an essential role in the sta-
bility of the implant, and as consequence on the success of the
surgery [21,22]. Since the model of surface elasticity by Gurtin and
Murdoch [9] found numerous applications in micro- and nanome-
chanics [23–25,14] our model can be also used for modelling of
wave propagation in structures of micron and nanometer size.

The paper is organized as follows. After this introduction (Sec-
tion 1), in Section 2 we present the governing equations of the
model of an isotropic solid with surface/interfacial reinforcements.
For the material behaviour in the bulk, we use the classic Hooke’s
law while for surface/interface we propose the model of surface
elasticity. The model is similar to models of Gurtin–Murdoch and
Steigmann–Ogden but includes also surface mass and new terms
in the case of interfaces between solids. Here, we  consider two
cases called perfect interface and non-perfect one. For a perfect
interface, we assume that displacement field is a continuous in
the vicinity of the interface while for a non-perfect interface, we
assume that discontinuities in displacements may  exist. The motion
equations and dynamic boundary/interfacial conditions at the sur-
face/interface are obtained using the variational principle of least
action. For an elastic half-space, in Section 3, we derive the solution
of the problem which decays exponentially with distance from the
half-space surface and discuss range of material parameters when
such type solutions exist. The discussed waves are similar to the
Love waves existing in layered half-space. Finally, in Section 4 we
discuss the propagation surface anti-plane waves along interface
between two elastic half-spaces, when considering perfect and non
perfect boundary conditions. Finally, in Section 5, some conclusions
are drown.

2. Governing equations

Let an elastic solid occupy a volume V in R3 with the boundary
A = ∂V and where R3 designates the three-dimensional space. We
assume that the solid may  consist of two parts, V+ and V− separated
by a smooth interface I. We  attribute to the interface surface, strain
and kinetic energy densities. In addition, we also assume the pres-
ence of surface energy and surface stresses on the part of boundary,
that is on As ⊂ A. We  consider infinitesimal deformations of the solid
described by the displacement field

u = u(x, t), (1)

where u is a twice differentiable vector-function of displacements,
x is the position vector and t is time.

In what follows, we use the classic constitutive equations of an
isotropic body in the bulk

W = �e : e + 1
2

�(tr e)2,

� ≡ ∂W
∂e

= 2�e + � I tr e,

e = 1
2

(∇u + (∇u)T ),

(2)

where W is the strain energy density, � is the stress tensor, e is
the strain tensor, I is the unit second-order tensor, the double dot
stands for scalar (inner) product of two second-order tensors, � and
� are Lamé moduli, � > 0, 3� + 2� > 0, ∇ is the 3D nabla operator,
and tr is the trace operator. The kinetic energy density is given by

K = 1
2

�u̇ · u̇, (3)

where � is the mass volume density and overdot stands for the
derivative with respect to time t.

For the surface elasticity model, we consider the
Gurtin–Murdoch approach [5,9] with taking into account the
surface-related kinetic energy. According [9], the surface strain
energy density Ws and surface stress tensor � are defined as follows

Ws = �s� : � + 1
2

�s(tr �)2,

� ≡ ∂Ws

∂�
= �s� + �sAtr �,

� = 1
2

(
(∇su) · A + A · (∇su)T

)
,

(4)

where �s and �s are the surface elastic moduli called also sur-
face Lamé moduli, ∇s is the surface nabla operator, A ≡ I − n ⊗ n
are the surface unit second-order tensor, n is the unit vector of
outer normal to As, the symbol ⊗ designates the tensorial prod-
uct between two  vectors and � is the infinitesimal deformations
associated with the surface. In addition, we take into account the
mass density associated with the surface where surface stresses
are defined. This assumption results in the following formula for
surface kinetic energy density [5]

Ks = 1
2

mu̇ · u̇|x ∈ As , (5)

where m is the surface mass density.
For the interface, we  propose the following models. We

distinguish the perfect interface without discontinuities in dis-
placements and non-perfect one when such discontinuity may
exist. We  attribute to the non-perfect interface two  displace-
ment fields that is one-sided limits u− = lim u(x−, t)x−→I and u+ =
lim u(x+, t)x+→I , where x± ∈ V±. The surface strain energy density
and the surface kinetic energy density are assumed to be

Wi = �−
s �− : �− + 1

2
�−

s (tr �−)2 + �+
s �+ : �+ + 1

2
�+

s (tr �+)2

+ 1
2

�u�  · K · �u�  + 1
2

�∇su�  : K̄ : �∇su�, (6)

Ki = 1
2

(m−u̇− · u̇− + m+u̇+ · u̇+). (7)

The model described by the relations (6) and (7) takes into
account surface elasticity according to the Gurtin–Murdoch model,
so we  have two sets of surface elastic moduli �±

s and �±
s , and

the adhesion (interaction) energy described by second-order ten-
sor K and fourth-order tensor K̄. Tensors K and K̄ describes the
changes of energy for �u �  /= 0. The square brackets denote here
the jump across the interface that is �u �  = u− − u+. K is similar to
stiffness of the Winkler elastic foundation while K̄ relates with the
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