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a  b  s  t  r  a  c  t

We  present  a preliminary  examination  of a  new  approach  to  a long-standing  problem  in non-Newtonian
fluid  mechanics.  First,  we  summarize  how  a  general  implicit  functional  relation  between  stress  and  rate
of strain  of  a continuum  with  memory  is  reduced  to the well-known  linear  differential  constitutive  rela-
tions  that  account  for  “relaxation”  and  “retardation.”  Then,  we show  that  relaxation  and  retardation  are
asymptotically  equivalent  for small  Deborah  numbers,  whence  causal  pure  relaxation  models  necessarily
correspond  to ill-posed  pure  retardation  models.  We  suggest  that  this  dichotomy  could  be  a  possible  way
to  reconcile  the  discrepancy  between  the  theory  of  and certain  experiments  on viscoelastic  liquids that
are conjectured  to exhibit  only  stress  retardation.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Viscoelastic non-Newtonian fluids continue to be an active area
of research not only because of the difficulties in their theoretical
modeling [1] and the challenges in their experimental interroga-
tion [2], but also because of their abundance in biophysics [3–5]
and their relevance to continua with local thermal non-equilibrium
effects [6, §8.4].

Recently, new experimental methods have been proposed
for rheological measurements of polymeric solutions [2] and
novel calculations have been performed for the locomotion
of microorganisms in “weakly viscoelastic” fluids [4]. Yet, the
“second-order fluid” model used in the latter works, and also
for interpreting previous experiments [7], is unstable (ill-posed
in the sense of Hadamard) [8–10] for a first normal stress dif-
ference �1 > 0 as measured. Various explanations have been
put forth [11], often questioning the experimental setup and
data analysis. Others dismiss the difficulty as not important
for “small” departures from Newtonian behavior. Similar ill-
posed models arise from the Chapman–Enskog expansion of the
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Boltzmann–Bhatnagar–Gross–Krook equation when keeping only
leading-order non-Newtonian terms [12,13].

In the face of such extensive evidence that, in the real world,
the first normal stress difference �1 > 0 for a second-order fluid, it
appears to us that it is neither satisfactory to claim that the insta-
bility is not manifested for “slow flows” or “small departures from
Newtonian behavior” nor is it satisfactory to repeat the mantra that
all experimental results are inconclusive or wrong. New insights
are needed to understand such a non-trivial discrepancy in the
foundations of viscoelasticity, given the resurgence of the “second-
order fluid” model [2,4,12,13]. In this preliminary research report,
we propose another approach. Specifically, we show how the ill-
posed second-order (retardational) fluid model may  arise as an
improper interpretation of a fluid that is actually exhibiting stress
relaxation of the Maxwell type [14],2 since the latter would be
indistinguishable from the former for small departures from New-
tonian rheology.

2. Background on memory effects and nonlocal rheology

In this section, in order to make this preliminary research report
self-contained and accessible to a wider audience, we summarize

2 Maxwell-type relaxation is also common in nonclassical theories of heat con-
duction [15–17] and thermoelasticity [18].
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the standard background on constitutive modeling for viscoelastic
fluids.

As usual, we decompose the stress tensor T into an indetermi-
nate part (the spherical pressure p) and a constitutive part S as
T = − pI + S. We  consider only isochoric motions (or incompressible
fluids) so that tr (∇ u) = ∇ · u = 0, where u is the velocity field. The
fluid is assumed homogeneous and isotropic so that it has constant
density �0, and its rheological parameters (e.g., the viscosity) are
constant scalars.

The most general implicit relationship between the stress tensor
T(x, t) and the rate-of-strain tensor E(x, t) that includes the effect of
memory is a functional that depends on the independent variables.
The relationship is further assumed to be local in the spatial variable
(i.e., the functional’s value at a given point x is a point function of
these tensors at x) to preclude “action at a distance” effects. Hence,

F[S(x, · ), E(x, · )](x,  t) = const., (1)

where F  is a continuous functional, and the “dummy” variable of
integration is substituted in place of the dots.

Eq. (1) can be developed into a Volterra functional series (see, e.g.,
Walters [19] and Bird et al. [20, §9.6]):

M(0)(t) +
∫ t

−∞
M(1)(t − s; t)S(x, s) d s + · · ·

+
∞∑

j=2

∫ t

−∞
· · ·

∫
1
j!

M(j)(t − s1, . . .,  t − sj; t)

j∏
l=1

S(x, sl) d sl

= K (0)(t) +
∫ t

−∞
K (1)(t − s; t)E(x, s) d s + · · ·

+
∞∑

j=2

∫ t

−∞
· · ·

∫
1
j!

K (j)(t − s1, . . .,  t − sj; t)

j∏
l=1

E(x, sl) d sl. (2)

Let us further assume that the constitutive relation (1) does not
depend explicitly on time, i.e., the functional F  is stationary,  or time
invariant [21], so that the kernels M(0), K(0) = const ., and the ker-
nels M(j), K(j) are functions of the “dummy” variable only. Since the
fluid is isotropic, the kernels are scalar functions of their argument.3

Also, requiring that zero stress produces zero strain (i.e., we do
not consider plasticity), together with the time-invariance of the
constitutive relation, implies that M(0) = K(0) = 0.

Eq. (2) is the most general nonlocal (functional) dependence of
the stress on the rate of strain as first proposed by Green and Rivlin
[22] from a different perspective. The memory effects are modeled
for all time, i.e., from t =− ∞,  without loss of generality, since a cut-
off from fading (or somehow limited) memory can be introduced
through the kernels. The upper limit of integration is t so that the
relation is causal, i.e., S (and therefore T) depends only on the values
of E for the instants of time prior to the current one.

2.1. Linearized memory relations

When the functional F  in (1) is linear in its two arguments, (2)
reduces to∫ ∞

0

M(�)S(t − �) d � =
∫ ∞

0

K(�)E(t − �) d � (3)

after the change of variables � = t − s. The superscript “(1)” on
the kernels is omitted for the sake of simplicity of notation.

3 The kernels M(j) and K(j) are related to the Fréchet derivatives of the functional
F  in (1) [21], which makes the Volterra expansion analogous to a Taylor series. Its
convergence is beyond the scope of the present work, however.

Furthermore, for consistency with Navier–Stokes theory, we
assume that

∫ ∞
0

M(�) d � = 1 and
∫ ∞

0
K(�) d � /= 0. Under mild

restrictions on the kernels, one can resolve (3), using the Laplace
transform and the convolution theorem, into S =

∫ ∞
0

K(�)E(t −
�) d � (strain memory only) or E =

∫ ∞
0

M(�)S(t − �) d � (stress mem-
ory only). The former case is related to the classic memory
assumption of Coleman and Noll [23,24], which is recovered if a
Dirac delta is stipulated to be part of the resolved kernel. The latter
case gives the implicit “twin” of the Coleman–Noll theory. Though
the kernels M and K in (3) may  be well-behaved for fast fading
memory, after the resolution with respect to either S or E, the effec-
tive kernels M and K do not necessarily have the same smoothness
properties. In other words, it may not always be desirable to separate
relaxation from retardation in the general linear constitutive relation
(3).

2.2. Differential constitutive relations

Constitutive relations involving derivatives of S and E have been
used extensively in the last couple of decades [25]. To motivate
such differential approximations of the rheology with memory, we
expand the tensors S(t − �) and E(t − �) into Taylor series about
t = 0 (see also [26] for a related derivation in the hyperbolic heat
conduction context):

S(t − �) =
∞∑

j=0

(−�)j

j!
S(j)(t), E(t − �) =

∞∑
j=0

(−�)j

j!
E(j)(t). (4)

Substituting the latter expressions into (3), we obtain

S + �1Ṡ + �2S̈ + · · · = �0(E + �1Ė + �2Ë + · · ·), (5)

where �0 = 1, �j := (−1)j

j!

∫ ∞
0

�jM(�) d � (j ≥ 1), �0 =
∫ ∞

0
K(�) d � and

�0�j := (−1)j

j!

∫ ∞
0

�jK(�) d � (j ≥ 1); �j, �j (j ≥ 1) carry units of

timej , while �0(> 0) is the viscosity understood in the sense of
Navier–Stokes theory. The general differential constitutive relation
(5) was anticipated by Burgers [27].

The terms with derivatives on the left-hand side of (5) are
called (“generalized”) relaxations,  while the respective terms on
the right-hand side of (5) are termed (“generalized”) retardations.4

Respectively, the coefficients �j are the “generalized relaxation
times,” while the �j are the “generalized retardation times.” Note
that we  have changed the primes to dots in order to emphasize the
fact that these are derivatives with respect to t. For the present pur-
poses, it suffices to identify these with ordinary time derivatives,
and henceforth ˙(  · ) ≡ ∂t( · ) ≡ ∂( · )/∂t. However, going beyond uni-
directional flows in stationary media, one has to replace them with
properly invariant convected time rates [28–31].

Finally, it is important to note that a nonlocal rheology of differ-
ential type may only be used when all the integrals defining each �j
and �j exist. The issue was  brought up by Coleman and Markovitz
[32, §2] and elucidated further by Joseph [10]. This means that the
decay of the kernel at infinity must be super-algebraic (unless the
expansion is truncated at some finite j); the simplest case is that of
exponential decay [33–36].5 In this case, the differential approxi-
mation can be especially good quantitatively since only the first few

4 Another name for the physical effect described by the word ‘retardation’ is elastic
hysteresis due to internal friction [27, p. 19].

5 If the fading memory follows a power law �−ˇ ,  ̌ ∈ (0, 1), then even the integral
defining �1 and/or �1 can diverge, and the differential constitutive relation will
feature a fractional-order derivative, if it exists at all. In heat conduction through a

polydisperse suspension (see, e.g., [37]), one has 1
�(ˇ)

∫ t

0
(t − s)ˇ−1E(s) d s ≡ 0D−ˇ

t E,

i.e.,  the Riemann–Liouville fractional integral [38, §1.1], as the right-hand side of (3).
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