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a b s t r a c t 

Analytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sen- 

sitive materials has been a challenging area due to irradiation damage. There is a pressing need to de- 

velop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well 

as reduce the data acquisition time. The latter is useful for high-throughput analysis of materials structure 

and chemistry. In this work, we present a novel machine learning based method for dynamic sparse sam- 

pling of EDS data using a scanning electron microscope. Our method, based on the supervised learning 

approach for dynamic sampling algorithm and neural networks based classification of EDS data, allows a 

dramatic reduction in the total sampling of up to 90%, while maintaining the fidelity of the reconstructed 

elemental maps and spectroscopic data. We believe this approach will enable imaging and elemental 

mapping of materials that would otherwise be inaccessible to these analysis techniques. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Analytical electron microscopy based on energy dispersive X- 

ray spectroscopy (EDS) is a very versatile and successful tech- 

nique for exploring elemental composition in microanalysis from 

the sub-nanometer scale to the micron scale [1–3] . Modern scan- 

ning electron microscopes (SEM) equipped with EDS detectors are 

routinely used for qualitative, semi-quantitative or quantitative el- 

emental mapping of various materials ranging from inorganic to 

organic, and including biological specimens. Although EDS allows 

us to identify the elemental composition at a given location with 

high accuracy, each spot measurement can take anywhere from 0.1 

to 10 s to acquire. As a result, if one wants to acquire EDS maps 

on a rectilinear grid with 256 × 256 grid points, the total imaging 

time could be on the order of tens to hundreds of hours. Further- 

more, during the acquisition process, the sample gets exposed to 

a highly focused electron beam that can result in unwanted radia- 

tion damage such as knock-on damage, radiolysis, sample charging 

or heating. Organic and biological specimens are more prone to 

such damage due to electrostatic charging. Therefore minimizing 
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the total radiation exposure of the sample is also of critical impor- 

tance. One approach to solve this problem is to sample the rectilin- 

ear grid sparsely. However, it is critical that elemental composition 

maps reconstructed from these samples are accurate. Hence the se- 

lection of the measurement locations is of critical importance. 

Sparse Sampling techniques in the literature fall into two 

main categories – Static Sampling and Dynamic Sampling (DS). 

In Static Sampling the measurement locations are predetermined. 

Such methods include object independent static sampling meth- 

ods such as Random Sampling strategies [4] and Low-discrepancy 

Sampling strategies [5] , and sampling methods based on a model 

of the object being sampled such as those described in [6,7] . In 

Dynamic Sampling, previous measurements are used to determine 

the next measurement or measurements. Hence, DS methods have 

the potential to find a sparse set of measurements that will al- 

low for a high-fidelity reconstruction of the underlying sample. 

DS methods in the literature include dynamic compressive sens- 

ing methods [8,9] which are meant for unconstrained measure- 

ments, application specific DS methods [10–12] , and point-wise 

DS methods [13–15] . In this paper, we use the dynamic sampling 

method described in [15] , Supervised Learning Approach for Dy- 

namic Sampling (SLADS). SLADS is designed for point-wise mea- 

surement schemes, and is both fast and accurate, making it an 

ideal candidate for EDS mapping. 
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In SLADS, each measurement is assumed to be scalar valued, 

but each EDS measurement, or spectrum, is a vector, containing 

the electron counts for different energies. Therefore, in order to ap- 

ply SLADS for EDS, we need to extend SLADS to vector quantities 

or convert the EDS spectra into scalar values. In particular, we need 

to classify every measured spectrum as pure noise or as one of L 

different phases. To determine whether a spectrum is pure noise, 

we use a Neural Network Regression (NNR) Model [16] . For the 

classification step we use Convolutional Neural Networks (CNNs). 

Classification is a classical and popular machine learning prob- 

lem in computer science for which many well-established mod- 

els and algorithms are available. Examples include logistic regres- 

sion and Support Vector Machines (SVM) which have been proven 

very accurate for binary classification [17] . Artificial neural net- 

works, previously known as multilayer perceptron, have recently 

gained popularity for multi-class classification particularly because 

of CNNs [18,19] that introduced the concept of deep learning. The 

CNNs architecture has convolution layers and sub-sampling layers 

that extract features from input data before they reach fully con- 

nected layers, which are identical to traditional neural networks. 

CNNs-based classification has shown impressive results for natural 

images, such as those in the ImageNet challenge dataset [20] , the 

handwritten digits (MNIST) dataset [21] and the CIFAR-10 dataset 

[22] . CNNs are also becoming popular in scientific and medical re- 

search, in areas such as tomography, magnetic resonance imaging, 

genomics, protein structure prediction etc. [23–26] . It is because 

of the proven success of CNNs that we chose to use one for EDS 

classification. 

In this paper, we first introduce the theory for SLADS and for 

detection and classification of EDS spectra. Then, we show results 

from four SLADS experiments performed on EDS data. In particular, 

we show experiments on a 2-phase sample measured at two dif- 

ferent resolutions and experiments on a 4-phase sample measured 

at two different resolutions. We also evaluate the performance of 

our classifier. 

2. Theoretical methods 

In this section we introduce the theory behind dynamic sam- 

pling as well as how we adapt it for EDS. 

2.1. SLADS Dynamic sampling 

Supervised learning approach for Dynamic Sampling (SLADS) 

was developed by Godaliyadda et al. [15,27,28] . The goal of dy- 

namic sampling, in general, is to find the measurement which, 

when added to the existing dataset, has the greatest effect on the 

expected reduction in distortion (ERD). It is important to note that 

in this section we assume, as in the SLADS framework, that every 

measurement is a scalar quantity. We later elaborate how we gen- 

eralize SLADS for EDS, where measurements are vectors. 

First, we define the image of the underlying object we wish to 

measure as X ∈ R 

N , and the value of location s as X s . Now assume 

we have already measured k pixels from this image. Then we can 

construct a measurement vector, 

Y (k ) = 

⎡ 

⎣ 

s (1) , X s (1) 

. . . 

s (k ) , X s (k ) 

⎤ 

⎦ . 

Using Y ( k ) we can then reconstruct an image ˆ X (k ) . 

Second, we define the distortion between the ground-truth X 

and the reconstruction 

ˆ X (k ) as D 

(
X, ˆ X (k ) 

)
. Here D 

(
X, ˆ X (k ) 

)
can be 

any metric that accurately quantifies the difference between X and 

ˆ X (k ) . For example, if we have a labeled image, where each label 

corresponds to a different phase, then, 

D 

(
X, ˆ X 

(k ) 
)

= 

N ∑ 

i =1 

I 
(
X i , ˆ X 

(k ) 
i 

)
, (1) 

where I is an indicator function defined as 

I 
(
X i , ˆ X 

(k ) 
i 

)
= 

{
0 X i = 

ˆ X 

(k ) 
i 

1 X i � = 

ˆ X 

(k ) 
i 

. 
(2) 

Assume we measure pixel location s , where s ∈ { � \ S } , where 

� is the set containing indices of all pixels, and S is the set con- 

taining pixel locations of all measured pixels. Then we can define 

the reduction in distortion (RD) that results from measuring s as, 

R 

(k ;s ) = D (X, ˆ X 

(k ) ) − D (X, ˆ X 

(k ;s ) ) . (3) 

Ideally we would like to take the next measurement at the pixel 

that maximizes the RD. However, because we do not know X , i.e. 

the ground-truth, the pixel that maximizes the expected reduction 

in distortion (ERD) is measured in the SLADS framework instead. 

The ERD is defined as, 

R̄ 

(k ;s ) = E 

[
R 

(k ;s ) | Y (k ) 
]

. (4) 

Hence, in SLADS the goal is to measure the location, 

s (k +1) = arg max 
s ∈ �

{
R̄ 

(k ;s ) }. (5) 

In SLADS the relationship between the measurements and the 

ERD for any unmeasured location s is assumed to be given by, 

E 

[
R 

(k ;s ) | Y (k ) 
]

= 

ˆ θV 

(k ) 
s . (6) 

Here, V (k ) 
s is a t × 1 feature vector extracted for location s and 

ˆ θ is 

1 × t vector that is computed in training. 

To compute ˆ θ we use the procedure described in [15,27] . First, 

we select M images that are similar to the image of the object 

we intend to measure. Then, for an image m ∈ M , we first select 

u 1 number of pixels at random as measurements, and designate 

the remaining pixels as unmeasured pixels. Then, for every unmea- 

sured pixel s , we can extract a feature vector V s and compute the 

RD in Eq. (3) by computing the reconstruction before, ˆ X (k ) , and re- 

construction after, ˆ X (k ;s ) , pixel s is included in the measurements. 

However, with this method, we need to compute 2 reconstruc- 

tions for each unmeasured pixel, and for the N − u unmeasured 

pixels, we need to compute N − u + 1 reconstructions. To address 

this problem, an approximation to the RD is introduced in [15,27] , 

which reduces the number of reconstructions to 1 per training im- 

age m and measurement selection u . 

˜ R 

(s ) = 

∑ 

r∈ �
h s,r D 

(
X r , ˆ X r 

)
, (7) 

where 

h s,r = exp 

{
− 1 

2 σ 2 
s 

‖ r − s ‖ 

2 

}
(8) 

and ‖ r − s ‖ is the Euclidean distance between pixels r and s , and 

σ s is given by 

σs = 

min t∈S ‖ s − t‖ 

c 
, (9) 

where S is the set of measured locations. It is important to note 

that we have removed the superscript k in these and the proceed- 

ing equations because when building the training database, we ex- 

tract entries with different initial measurements i.e. different val- 

ues of k . The procedures for estimating this parameter an empir- 

ical validation of this approximation are also detailed in [15,27] . 

Now, from different random selections u 1 , u 2 , . . . u h for each image 

m ∈ M , we extract a features vector and the corresponding RD for 

every unmeasured pixel, to form, 

R = 

⎡ 

⎣ 

˜ R 

(s 1 ) 

. . . 
˜ R 

(s n ) 

⎤ 

⎦ , V = 

⎡ 

⎣ 

V s 1 

. . . 
V s n 

⎤ 

⎦ . (10) 
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