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a b s t r a c t

Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a
means of recording images of biological specimens with better signal to noise ratio (SNR) than regular
bright field images. I investigate whether and how such images could be used to determine the three-
dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manu-
factured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak
amplitude and phase objects and test this theory using computer simulations. I also test whether these
simulated images can be used to calculate a three-dimensional model of the protein using standard
software and discuss problems and possible ways to overcome these.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the current frontiers in cryo TEM is the structure de-
termination of relatively small proteins, with a mass below about
300 kDa. One way to reach this goal is to increase the signal to
noise ratio (SNR) of the images recorded. ADF-TEM has been re-
cently suggested as one possible imaging mode for achieving this
purpose [14]. These ideas, however, date back much further in the
history of electron microscopy. The earliest realization of ADF-TEM
on inorganic specimens is presented in [9] based on earlier theo-
retical work referenced therein. Ottensmeyer and co-workers were
among the earliest to apply dark field TEM (by tilting the beam) to
biological specimens [17] and to attempt the three-dimensional
reconstruction of a macromolecule based on dark field TEM mi-
crographs [18,19]. However, these attempts were made before the
invention of cryo-preservation of aqueous specimens [4]. Later the
high contrast of dark field imaging was also exploited in ADF–
STEM in order to determine three-dimensional protein structures
[16,3]. The motivation for all these experiments was to exploit the
high SNR of dark field imaging to be able to image small proteins
with sufficiently high quality for 3D-reconstruction. In contrast to

this, dark field STEM has also been suggested as a means of ima-
ging thick cryo-sections of cells for tomographic reconstruction of
cellular structures owing to the higher image quality achievable
for thick and highly tilted sections compared to conventional cryo
electron tomography.

Obviously high contrast is not the only requirement for being
able to use a particular imaging mode in quantitatively correct
three-dimensional (3D) structure determination at high resolu-
tion. There also has to be a well-defined mathematical relationship
between the specimen (in this case the electrostatic potential of a
protein) being imaged and the images. Additionally, methods for
inverting this relationship have to exist. For example, to be able to
use filtered backprojection for 3D reconstruction, the images
should, after deconvolution of a known point spread function, be
proportional to the projection of the specimen. As a first test
whether ADF-TEM imaging could be used for structure determi-
nation I have therefore carried out image formation simulations in
ADF mode and calculated 3D reconstructions using standard
software (EMAN) based on these simulated images. To be able to
specify the mathematical relationship between the specimen and
ADF-TEM images I also outline an approximate image formation
theory valid under certain circumstances. In contrast to the ADF
aperture used in [14], which has a quite narrow passband at very
high resolution I simulate images for an ADF aperture with a
passband between 50 and 5 Å resolution for a Cs of 2 mm and
between 50 and 2.5 Å resolution for a Cs of 0.1 mm. I make no
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claim whether such an aperture can be manufactured or used, but
I investigate whether it would be worth trying.

2. ADF-TEM image formation

In order to specify exactly how the simulations presented in the
following sections were carried out I list here the main assump-
tions of the well-established description of image formation for
weak and semi-weak amplitude and phase objects. I then make
specific modifications and approximations for the case of annular
dark field transmission electron microscopy of weak amplitude
and phase objects. I also state which particular conventions re-
garding signs, for example, I follow.

In the phase-object-approximation (POA) the wave exiting the
specimen (exit wave) can be written as

ψ ψ( ) = ( ) ( )σ ϕ ( )z t z t ex, , , 1ex i
i x

where ψi(z,t) is the incoming electron wave (a plane wave with
wavelength λi travelling in z-direction, with amplitude 1 for sim-
plicity). I use the convention of writing the plane wave as:

ψ ( ) = ( )π ν( − )z t e, 2i
i kz t2

The object φ(x), that is being imaged in the microscope, is the
projection of the specimen's electrostatic potential V(x,y,z) along
the optical axis (z-axis) and

σ π λ=
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is the positive valued interaction constant.
(See e.g. [2,23,24,6,20])
Bold letters are used for vectors in two dimensions in this pa-

per so that for example x stands for the coordinates (x,y) in real
space whereas u stands for the corresponding Fourier coordinates
or two-dimensional wave vector (u,v).

Amplitude contrast can be included in this model by letting the
potential and therefore the object φ(x) be a complex valued
function [5,6]. The imaginary part of this complex potential has to
be positive in order to describe amplitude reduction.

The exit wave given in Eq. (1) is propagated through the lens
system of the electron microscope and finally produces an image
on the detector. These processes can be summarized as follows:

A lens produces the Fourier transform of the exit wave in its
focal-plane and the effect of the lens aberrations can be described
as a multiplication of this Fourier transform with a phase factor
containing the lens aberration function in its argument [20].

⎡⎣ ⎤⎦Ψ ψ( ) = ( ) ( )χ− ( )z t FT z t eu x, , , , 4pc ex
i u

This modified exit wave is inversely Fourier transformed while
it propagates to the image plane where it then produces an image
on the detector [8].

An image of the modified exit wave is proportional to the ab-
solute square of the wave-function [20]. Here I have also made it
explicit that the image is a function of only x since the dependence
on z and t cancels when the absolute square of the wave function
is calculated, as can be seen from Eqs. (1) and (2).

ψ( ) = ( ) ( )i z tx x, , 5pc
2

The lens aberration function (see for example [20] or [6] is
given by

χ π λ π λ( ) = + ( )u D u C u
2 6

2
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where u is the spatial frequency, the magnitude of the wave vector

u, D is the defocus (D is negative for underfocus, positive for
overfocus), λ is the wavelength of the electron and Cs is the
spherical aberration coefficient. This form of the lens aberration
function is valid in the absence of astigmatism.

Partial spatial coherence is taken into account by multiplying
the Fourier transform of the exit wave with a Gaussian envelope.

For finite values of the product sφ(x) we can develop Eq. (1)
into a McLaurin series which, considering only terms up to the
second order for relatively weak amplitude and phase objects,
gives
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The Fourier transform with respect to x of this expression is
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where F(u) is the Fourier transform of φ(x) and Fd(u) is the Fourier
transform of φ2(x):

⎡⎣ ⎤⎦ϕ ϕ ϕ( ) = ( ) = [ ( )]* [ ( )] = ( )* ( ) ( )F FT FT FT F Fu x x x u u 9d
2

The symbol * stands for convolution.
The Fourier transform of the exit wave-function (8) is modified

by the lens as specified in Eq. (4) ([20] leading to:
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The image can therefore be written as:
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An ADF aperture removes all spatial frequencies below a given
value from the exit wave. Therefore the first term, containing δ(u),
in the above equation will not contribute and the lowest order
term of the dark field image becomes:

∫σ( ) ≈ ( ) ( ) ( )
π χ− ( )i d e F A u ex u u 12df

i ixu u2 2
2

All terms containing s taken to the power of 3 and higher are
assumed to be much smaller than the term given in Eq. (12) and
therefore ignored.

A(u) describes the effect of the ADF aperture as follows:

⎧⎨⎩
⎫⎬⎭( ) = < <
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min max

In the above derivations I have made no special assumption
about the absorption potential, other than its being real valued.
However for the following approximation and the simulations in
the next section I will assume that the absorption potential is a
small, fixed percentage of the real potential (7%). This is a com-
monly used assumption for specimens consisting of mainly one
type of atom ([7].

When recording an image close to focus the lens aberration
function is approximately zero for the lowest spatial frequencies
up to about 5 Å resolution in the case of a spherical aberration of
2 mm and a defocus of 13 nm as shown by the plot labelled “Cs
¼2 mm” in Fig. 1. For lower values of the Cs this resolution range
can be extended, for example to better than 2.5 Å in the case of a
Cs of 0.1 mm and a defocus of 3 nm, shown by the plot labelled “Cs
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