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a b s t r a c t

This work reports on the computational method for the long time propagation of the quantum channeled
particles in infinite and finite harmonic interaction wells and in a realistic carbon nanotube interaction
potential well. This method is based on the Chebyshev global propagation method for solving of the
corresponding time dependent Schrödinger equation. For comparison, the computational method based
on the Crank–Nicolson propagation method is also presented. In the case of quantum particle motion in
infinite harmonic potential well, when the analytical solution of the corresponding time-dependent
Schrödinger equation exists, we show that the obtained propagation method is efficient, very accurate
and numerically stable. It is superior with respect to the method based on the Crank–Nicolson
propagation method. A detailed study of the long time quantum particle motion in the finite harmonic
interaction potential well shows that the obtained computational method based on the Chebyshev global
propagation method can be successfully applied for following of the channeled quantum particle in
crystals and carbon nanotubes. This is demonstrated in the case of quantum particle motion in a realistic
carbon nanotube interaction potential well.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Channeling effect of positive charged particle in crystals [1] and
carbon nanotubes [2,3] occurs when the particle’s velocity vector
with respect to the crystal’s and nanotube’s axes remains small
during its motion through crystals and carbon nanotubes, respec-
tively. The ion channeling effect in crystals was discovered in a
computer simulation of Robinson and Oen [4]. It can be shown that
the classical treatment of the particle channeling motion is ade-
quate for heavy particles – ions [1]. However, for a light particle
(e.g. positron) the quantum treatment must be implemented [5].

Recently, the strong spatial focusing of the channeled protons
along the axis of the h100i silicon crystal, which was named the
superfocusing effect, was proposed [6]. In that study, the analytical
solution of the time-dependent Schrödinger equation for the quan-
tum particle motion in the infinite harmonic interaction potential
well, assuming initially centered Gaussian wave packet, was used
to demonstrate the focusing of the wave packet at the subatomic

dimension. It has been shown that the superfocusing effect is a
consequence of the crystal rainbow effect [7,8]. Petrović et al. have
presented the possibility for development of a measurement
technique with the picometer resolution – the rainbow subatomic
microscopy, which is based on the superfocusing effect [9].

In this work we investigate the computational method for the
long time propagation of quantum particle in a finite harmonic
interaction potential well. The aim of this work is to develop
efficient and accurate method that can be used for following of
the channeled quantum particle in crystals and carbon nanotubes.

2. Physical model

The time-dependent Schrödinger equation is basic equation of
quantum mechanics. Its most general form is given with the
expression:

i�h
@

@t
wðr; tÞ ¼ bHðp̂; r̂; tÞwðr; tÞ; ð1Þ

where wðr; tÞ is the coordinate representation of quantum state,
with r and t being its position vector and time, respectively,bHðp̂; r̂; tÞ is the operator representation of total energy, i.e. Hamilto-
nian of system, which could be an explicit function of time t, with r̂
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and p̂ being the operators of its position and momentum vectors,
respectively, and �h is the reduced Planck constant.

We consider here motion of positively charged quantum
particle in a finite harmonic interaction potential well. Finite har-
monic interaction potential is a good qualitative approximation
of the continuum crystal and carbon nanotube interaction poten-
tials. As we have already mentioned, the infinite harmonic interac-
tion potential have been already applied for studding of the
superfocusing effect of the channeled particles in the silicon crystal
[6]. Also, the harmonic interaction potential approximation of the
continuum carbon nanotube interaction potential was used to
demonstrate how the particle channeling in carbon nanotubes
could be applied as a new source of hard X-ray radiation [10].

Finite harmonic interaction potential VFH is defined by the
following expressions:

VFHðrÞ ¼
1
2 mox2

or2; for r 6 R

0; for r > R
;

(
ð2Þ

where xo is characteristic angular frequency of quantum particle
motion, r ¼ ðx2 þ y2Þ1=2 is distance from the center of the potential
well; x and y are coordinates of the transverse motion of quantum
particle, and R radius of the potential well. It is depicted in
Fig. 1(a). Since the interaction potential VFH is not an explicit func-
tion of time, the formal solution of Eq. (1) is given by:

wðr; tÞ ¼ ÛðtÞwðr;0Þ ¼ expð�iĤt=�hÞwðr; 0Þ; ð3Þ

where ÛðtÞ is the evolution operator and Ĥ ¼ p̂2=ð2moÞ þ V̂FH is the
Hamiltonian of the system.

Initially, the quantum particle is represented with the wave
function in the form of a Gaussian wave packet of some known
standard deviation, with the impact parameter corresponding to
the center of the wave packet. Numerical integration of Eq. (1)
gives the time evolution of the wave function wðr; tÞ. Knowing this
all physical quantities for the system under the consideration can
be obtained. However, from the numerical point of view, the
potential given by the expressions (2) is undesirable because it is
discontinuous and its derivatives are discontinuous at the potential
well edges. Therefore, the Lorentzian and exponential functions are
used to smooth the well edges. This smoothing is schematically
shown in Fig. 1(b). The obtained interaction potential is given by
the following expressions:

VðrÞ ¼

1
2 mox2

or2; for r 6 R
V0

1þ r�r1
r0

� �2 ; for R < r 6 r2

V1e�
r�r2

r3 ; for r > r2

8>>>><>>>>: ; ð4Þ

where V0;V1; r0; r1 and r2 are the fitting parameters. Four of them,
V0;V1; r0; r1, were determined through the imposed conditions of
continuity of the interaction potential and its first derivative at
the r ¼ R and r ¼ r2. Therefore, this procedure leaves only one free
parameter, r2, and let us denote the obtained potential with
Vðr; r2Þ. Optimal value for the parameter r2 can be obtained from
the requirement that the difference between Vðr; r2Þ and VFHðrÞ
should be less than some predetermined small quantity e:

jjVðr; r2Þ � VFHðrÞjj2 6 e; ð5Þ

where jjVðr; r2Þ � VFHðrÞjj represents the functional norm. We solved
this problem using Trust-Region-Reflective algorithm [11] for the
least-square nonlinear curve fitting with e as the stopping criteria.
In the case under the consideration here the parameter e was set
to be 10�6.

3. Numerical methods

In this work, for simplicity, we investigate the numerical meth-
ods for solving 1D time dependent Schrödinger equation (1) for the
finite harmonic interaction potential (4). This simplifications is not
crucial, since the application of the numerical methods in the 2D
case is straightforward and all the conclusions from the obtained
results will hold in the 2D case as well. In the literature devoted
to the numerical mathematics one can find various methods for
integration of time-dependent Schrödinger equation [12,13]. Com-
putational complexity and efficiency practically limit area of appli-
cation of certain numerical integration method. Optimal numerical
solver for the particle channeling in crystals and nanotubes should
be efficient i.e. reasonably fast to be used in the long time particle
propagation and unconditionally stable, because it should be used
for different initial wave packets corresponding to different impact
parameters of the channeled particles.

For the numerical integration of Eq. (1) using the interaction
potential defined by the expressions (4), we have considered the
Chebyshev global propagation method, which was adopted by us
for the problem under the consideration and, for the comparison,
the Crank–Nicolson propagation method. Both of them are grid
methods using the space discretization of the continuous function
wðx; tÞ. The discretization grid is finite in size and is kept fixed dur-
ing the calculations. It should be noted here that in both of the
numerical methods only the values of the interaction potential
on the fixed grid are required. This fact was important in our choice
of the possible numerical methods for solving of the time-depen-
dent Schrödinger equation, since the chosen methods can be easily

Fig. 1. (a) The slice through the axially symmetric interaction potential VFHðrÞ for y ¼ 0, where R is radius of the potential well and VFHðRÞ is the value of the interaction
potential at the well edges. (b) Enlarged schematically presented smoothed part of the slice around the potential well edge. Full line represent its parabolic part, dashed line
its Lorentzian part, and doted line its exponential part.
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