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a  b  s  t  r  a  c  t

A  new  hybrid  approach  is proposed  for evaluation  of  flatness  error  using  the  Minimum  Zone  Method.  The
reduced  constraint  region  is used  to rapidly  determine  the effective  direction  of  enveloping  planes,  and
the  convex-hull  edge  of that  direction  is  used  to obtain  the minimum  zone  solution  through  iteration.
The  proposed  method  is  validated  through  the  numerical  tests  with  a number  of test  data  sets  including
those  published  in literatures  and large  new  data  sets  of  actual  measurements.  The  computed  results
indicate  that an  exact  and  fast  minimum  solution  can  always  be obtained  using the  proposed  method.  It
is therefore  concluded  that  the proposed  method  is one  of  the  approaches  which  can  be  used to  further
improve  the  accuracy  and  efficiency  of flatness  error  evaluation.

©  2016  Published  by Elsevier  Inc.

1. Introduction

Plane feature is one of the most basic forms of geometric prim-
itives. It is specified in ISO [1,2], ANSI [3] standards and CIRP
Encyclopedia of Production Engineering [4] that there are two flat-
ness error evaluation methods of least squares method (LSM) and
minimum zone method (MZM). It is recommended in ISO standards
to get form tolerance evaluated on the basis of MZM.  MZM  is defined
as two parallel planes enclosing the flatness surface and having the
least separation. However it has not been spelt out explicitly in the
standards how to determine minimum zone. Conversely, LSM is
univocally defined by its mathematical formulation, which implies
minimizing the L2 norm of the error vector of measured points. The
requirement of ISO standards is not satisfied, because the L∞ norm
is required to be minimized. So the results of LSM are inconsistent
with the MZM  solution. It is impossible to predict the difference
between them in practice. And MZM  responds better on flatness
tolerance evaluation.

Generically, final inspection results obviously depend on actual
measurements, sampling strategy and method of flatness tolerance
evaluation. The accuracy and rational distribution of sample points
are the precondition of error evaluation, which need to be complete,
continuous and homogeneous as far as possible. And the number

∗ Corresponding author. Tel.: +86 045186412041.
E-mail address: cuijiwen@hit.edu.cn (J.-W. Cui).

of measured data points is a predominant factor associated with
uncertainty [5,6]. Therefore, large-sized data sets are preferred to
ensure the desired evaluation accuracy. Due to the relationship of
the number of points with measuring cost and time, some works
[7,8] have sought the reduction of sampling size for a desired pre-
cision. Another way  is to use more efficient measurement devices.
Non-contacting measurement equipment has replaced contacting
probes used for inspection of thin or easily deflected work pieces.
The advantage is a large number of measured data points can be
generated within a reasonable period of time. Therefore the eval-
uation algorithms are required to be more effective and reliable in
handling these large-sized samples.

The methods which have been developed for flatness tolerance
evaluation so far can be mainly classified into numerical approaches
and computational geometry approaches. Numerical approaches
can be further divided into such specific categories as nonlinear
optimization based search methods, linear approximation meth-
ods, and meta-heuristic methods.

Much work has been done in recent years on the nonlinear
optimization model based search methods. For example, Kaiser
and Suzuki [9] applied downhill simplex search and repetitive
bracketing method. Similar to Kaiser and Suzuki, a method is used
where the least-squares plane is used as a starting point, and in a
downhill simplex method the gradient in x- and y direction is var-
ied until a minimum flatness value is found [10]. Prakasvudhisam
[11] showed that support vector regression (SVR) method could
be used to solve the flatness problem. One drawback of nonlinear
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search methods is the non-convexity of optimization problem and
the need of several trials with different initial conditions to ensure
global optimum. Approximation methods have been tried to
improve computational efficiency. Cheraghi [12] proposed a linear
search to solve nonlinear problem. Weber et al. [13] considered
the plane equation represented by two angle parameters and
one intercept constant, whose linearization by Taylor expansion.
Meta-heuristics have been applied to minimum zone to solve
combinatory optimization problems in an efficient way. In this
category we  find the improved genetic algorithm by Wen  [14]
and Tseng [15], particle swam optimization by Kovvur [16], and
differential evolution algorithm by Wang [17]. They used different
intelligence algorithms to solve a global optimization problem.

Much work has also been done on computational geome-
try approaches. Geometrical characteristics of a data set can be
expressed by a convex hull which is defined as the smallest convex
domain including all data points. Computational geometry meth-
ods determine the minimum width of convex hull to solve the
flatness problem. For example, Huang [18] reduced the calculation
of large number of data points and constructed a new convex hull
by adding new points. Samual and Shunmugam [19] proposed algo-
rithms to evaluate all the antipodal pairs of face and vertex alone.
Hermann [20] proposed an incremental convex hull algorithm for
the evaluation of a convex hull. Lee [21,22] presented a convex-hull
edge method which considered 2–2 and 3–1 models to guarantee
an exact minimum zone (MZ) solution.

Some authors have tried to adopt other approaches for flatness
tolerance evaluation. For example, Liu [23] combined genetic algo-
rithm (GA) with geometric calculation. Calvo et al. [24] suggested
the hard minimax problem into minisum problem and finally to
eigenvector problems. Zhu and Ding [25] proposed the equivalence
between the width of a point set and the inner radius of convex-
hull. Deng [26] presented valid characteristic point method (VCPM)
by which a normal vector of ideal enveloping planes satisfying the
MZ criteria is iteratively search for. However, with the fast develop-
ment of precision measuring instrument industry in recent years,
the requirements for accurate and reliable measurements become
increasingly stringent in reality. And the speed of calculation also
becomes increasingly important, not so much for traditional flat-
ness applications in precision such as low volume optics or artifact
surfaces, but for the growing trend toward optical inspection of
manufactured work pieces giving dense data sets. Meantime the
high volume production cases where the measurement and analy-
sis must keep pace with the speed of the production. It is of great
significance to find ways and means by which due considerations
can be given to both measuring accuracy and speed at the same
time in practice.

Therefore, a new hybrid approach is proposed for evaluation of
flatness error using the Minimum Zone Method. The reduced con-
straint region is used to rapidly determine the effective direction
of enveloping planes, and the convex-hull of that direction is used
to obtain the minimum zone solution through iteration.

2. Mathematical model for flatness error evaluation

2.1. Mathematical model for MZ  flatness evaluation

The purpose of minimum zone method is to search for the nor-
mal  vector of enveloping planes. If Pi(xi, yi, zi) (i = 1, 2,. . .,  n) is the
measured point extracted by an actual plane. The flatness tolerance
is two parallel planes enveloping all the data points of a surface,
and the minimum separation between two parallel planes is the
minimum zone solution of flatness error.

If the reference plane equation of two parallel planes is

m = ax + by + cz (1)

The condition of satisfaction can be expressed as

a2 + b2 + c2 = 1 (2)

Distance di from data point Pi(xi, yi, zi) to parallel plane can be
expressed as

di = m − axi − byi − czi (3)

The minimum separation between two  parallel planes is equiv-
alent to minimax distance f between points and reference plane
which can be expressed as shown below.

f = min
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Obviously, minimum distance f is the function of (a, b, c). Conse-
quently, the evaluation of flatness error is to search for the values
of (a, b, c), which is a nonlinear optimization problem.

2.2. Geometric characteristic points model for flatness error
evaluation

The MZ  solution of flatness error has been verified and adopted
in studies [27–29]. The parallel planes enveloping all the data points
must satisfy the following conditions: (1) As shown in Fig. 1, at
least four points must be in contact with the two enclosing parallel
planes in the form of a 3-1 model or a 2-2 model. In the 3-1 model,
there are three points on the upper plane, one point on the lower
plane, and the projection of the low point is within the triangle
composed by the three high points, or vice versa. In the 2-2 model,
there are two  points on the upper plane, two points on the lower
plane, and the line of two  high points crosses the line of two low
points when they are projected onto the upper or lower plane.

(2) Another phenomenon should be noted here [27]. In the 3-
1 model, the normal vector of the parallel planes is determined
by three points, and one point outside is needed to determine the
parallel planes. In the 2-2 model, a plane is the vectorial subspace
of dimension two, so the parallel planes can be defined by two non-
linear vectors. As shown in Fig. 2, two  parallel planes become two
straights outside after being projected along the direction of arrow,
and the distribution of data points will be directly coincident with
the MZ  criteria of straightness.
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