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a b s t r a c t

Industrial cyber-physical systems are the primary enabling technology for Industry 4.0, which refers to an
emerging data-driven paradigm focused on the creation of manufacturing intelligence using real-time
pervasive networks and operational data streams. These cyber-physical systems enable objects and pro-
cesses residing in the physical world (e.g. manufacturing facility), to be tightly coupled and evaluated by
advanced predictive analytics (e.g. machine learning models) and simulation models in the cyber world,
with the intention of realising self-configuring operations. Thus, this research presents an industrial
cyber-physical system based on the emerging fog computing paradigm, which can embed production-
ready PMML-encoded machine learning models in factory operations, and adhere to Industry 4.0 design
concerns pertaining to decentralisation, security, privacy and reliability.

� 2018 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Industrial cyber-physical systems enable objects and processes
from the physical world, to be tightly coupled with compute, com-
munication and control systems in the cyber world [1]. Cyber-
physical interfaces connecting both worlds facilitate transmissions
using wireless sensors, smart phones, and tablets, to name a few
[2]. Conceptually, these cyber-physical interfaces manifest ‘cyber
twins’, where real-world physical objects are represented as virtual
objects in the cyber-world. In turn, these virtual objects may be
individually and/or collectively analysed, interrogated or simu-
lated to derive operational insights and inform decision-making.

A prominent emerging network paradigm promising to bridge
physical and cyber-worlds is that of the internet-of-things, which
comprises internet-enabled devices and gateways to sense, collect,
send and receive data [3]. In terms of manufacturing, this may
involve interactions with sensors, controllers, actuators, radio-
frequency-identification (RFID) tags, global positioning systems
(GPS), and high-definition cameras [3], to name a few. Naturally,
these continuous and pervasive interactions produce large data
repositories (i.e. big data) that describe factory operations [1]. Once
enough high-quality data has been captured, these large datasets
can be analysed using machine learning to make useful predictions
(e.g. equipment failures).

At present, cloud and service-oriented computing appear to be
the most prominent compute paradigms used to implement indus-
trial cyber-physical systems [4–15]. However, traditional cloud
computing naturally conflicts with Industry 4.0 principles relating
to decentralised decision-making and reliable real-time control.
Although cloud and service-oriented computing can support dis-
tributed engineering scenarios, intelligence and processing (e.g.
decision-making) typically remain central (e.g. cloud server),
which means distributed clients depend on consistent and resilient
connections with the cloud. However, given industrial cyber-
physical systems may comprise networks-of-networks with uncer-
tain bandwidth, compute paradigms dependent on persistent con-
nections to centralised services are not suited to real-time
automation and control scenarios. To better address these Industry
4.0 concerns, compute paradigms supporting decentralised and
autonomous decision-making may be considered. Both multi-
agent systems [16,17] and fog computing [18–21] exemplify such
paradigms, where compute nodes operate autonomously to deliver
intelligence on the outer edge of pervasive networks, without
being concerned with persistent connectivity. In addition to
removing dependencies on external connectivity, the local and
autonomous operation of these paradigms can also reduce network
traffic (i.e. less requests), improve scalability (i.e. deploy more
nodes as needed) and enhance data security (i.e. data does not
leave the facility). Hence, this research presents an industrial
cyber-physical system that employs fog computing to deploy and
embed production-ready machine learning models, and compares
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the reliability and consistency of the implemented fog cyber-
physical interface with that of a traditional cloud interface.

2. Industrial cyber-physical system

2.1. Proposed fog topology

Fig. 1 illustrates the composition of the fog computing topology
for delivering real-time embedded machine learning using cyber-
physical interactions. The cloud platform stores production-ready
machine learning models encoded as Predictive Modelling Markup
Language (PMML) for different engineering applications (e.g.
equipment prognostics), which are disseminated and executed by
fog nodes deployed within the facility’s local network. Although
these local operations promote data security and privacy,
factory-to-cloud communications depend on the facility’s existing
security policies and services governing internet communications.
Once communications from the factory are received by the cloud,
the request is authenticated using the fog node’s 128-bit Global
Unique Identifier (GUID). A cloud database of registered devices
is used to lookup the GUID, identify the engineering applications
handled by the node, and return relevant PMML models to down-
load or synchronise. The downloaded PMML models are stored on
the fog so they may be executed within the physical boundaries of
the factory, and deliver real-time predictions and decision-making
(e.g. control changes) without persistent connections to the cloud.

2.2. Technical architecture

Fig. 2 illustrates the technical components used to implement
the industrial cyber-physical system. First, the sensing layer con-
tains the industrial equipment and systems to continuously
acquire real-time measurements, and an embedded software agent
to mediate communications between physical and cyber environ-
ments. Second, the fog layer contains technical components to
receive inbound data streams, execute PMML-encoded machine

learning models, and return results. Finally, the cloud layer contains
technical components to maintain metadata about each fog gate-
way deployed in the factory (e.g. engineering applications etc.),
persist PMML-encoded models in a global repository, and dis-
charge relevant PMMLmodels to fog gateways as machine learning
models are added or updated.

2.3. Performance assessment

A series of load/stress tests were applied to the implemented
fog and cloud cyber-physical interfaces to evaluate their (a) relia-
bility: maximum execution time, and (b) consistency: number of
failed communications. These performance parameters were cho-
sen given their fundamental importance to time-dependent con-
trol and engineering applications. The cloud and fog cyber-
physical technologies used during the experiments employed stan-
dard out-of-the-box configurations to protect from potential
biases, while experiments were executed in close proximity to
reduce fluctuating environmental conditions (e.g. broadband
throughput, local network activity etc.) contaminating perfor-
mance measurements. These measurements were captured using
a test computer hosting the open source load testing application
JMeter. The JMeter agent was configured with experiment param-
eters to send, receive and measure transmissions for each cyber-
physical interface. The OpenScoring engine was installed behind
both interfaces to handle JMeter requests, and execute the
PMML-encoded model using the data provided. The PMML model
was derived from an existing Support Vector Machine (SVM)
model that predicts faulty heating operations within industrial
air handling units.

JMeter was configured with several scenarios that continuously
increased the load on the cyber-physical interfaces. These stress
tests instructed JMeter to simulate 50, 100, 250 and 500 concurrent
connections (e.g. controllers, smart sensors etc.), and execute 1000
requests for each connection (e.g. 50 concurrent connections
would result in 50,000 requests).

Fig. 1. Composition of fog computing with cyber-physical interactions.
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