
Available online at www.sciencedirect.com

2212-8271 © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering

doi: 10.1016/j.procir.2017.12.213

 Procedia CIRP 67 (2018) 278 – 283

ScienceDirect

11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '17

Online learning of stability lobe diagrams in milling

 Jens Friedricha,*, Jonas Torzewskia, Alexander Verla
aInstitute for Control Engineering of Machine Tools and Manufacturing Units (ISW), University of Stuttgart, Seidenstraße 36, 70174 Stuttgart, Germany

* Corresponding author. Tel.: +49-711-685-82416; fax: +49-711-685-72416. E-mail address: Jens.Friedrich@isw.uni-stuttgart.de

Abstract

The productivity of milling machines is limited by chatter vibrations. Stability lobe diagrams (SLD) allow the selection of suitable process
parameters to maximize the productivity. However, the calculation of SLDs is very time-consuming and requires complex experiments. In this
article a new online learning method is presented, which allows the calculation of SLDs during the production process. The algorithm is a
combination of reinforcement learning and nearest-neighbor-classification and allows the estimation of the stability border based on measured
vibration signals during machining. The proposed algorithm is capable of being continuously trained with sorted input data. A trust criterion is
introduced, which allows judging the prediction quality of the algorithm. The algorithm is validated with analytical benchmark functions and
with a 2-DOF milling stability simulation.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

 Keywords: Milling; Stability; Chatter; Learning.

1. Introduction

Chatter vibrations are one of the most important factors
limiting the productivity of machining industry. They cause
poor surface quality, increase tool wear and can even cause
damages on the machine tool. Chatter vibrations are self-
excited vibrations, caused by the interaction of the cutting edge
with the surface left by the previous cut and the flexibility of
the machine structure [1, 2]. The chatter effect is a feedback
with time delay caused by the rotational speed of the spindle
and excited by the cutting forces. Therefore, the occurrence of
chatter in milling operations depends on the process parameters
(spindle speed, cutting depth, and cutting width), the tool-
material-combination and the dynamics of the machine tool
system [3, 4]. To ensure a stable, chatter free machining, the
process parameters are often chosen very conservatively.

To avoid chatter, active control strategies can be used for
varying the spindle speed in order to avoid the self-excitation
[5, 6] or for changing the spindle speed to a spindle speed which
is stable [7, 8].

An optimal spindle speed, cutting depth and cutting width
can also be selected based on the stability lobe diagram (SLD)
[4]. Each combination of spindle speed, cutting depth and

cutting width can be either classified as stable or unstable. This
information can be represented in a SLD, separating the stable
and unstable regions. The knowledge of the stability limit
allows the selection of process parameters for maximizing the
productivity. There exist several possibilities of generating
SLDs. The SLD can be calculated based on the stability of the
mathematical model with time delay [9, 10]. This demands a
very accurate model. An experimental approach avoids the
modelling by applying test cuts for different spindle speeds and
cutting depths [11, 12]. The model-based as well as the
experimental approach suffer from the additional effort of
identifying the model or the SLD. Moreover, the SLD is only
valid for the timeframe, in which the experiments were
performed, as the machine behavior can change over time [13].

In this paper, an approach to continuously learn the SLD
during productive milling is presented. The learning algorithm
allows the prediction of the stability border based on measured
vibration signals. The application during productive milling
leads to sorted input data and an incomplete training set. The
algorithm can be trained with incomplete, sorted training data
and the proposed trust criterion allows to judge the prediction
reliability.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering

279 Jens Friedrich et al. / Procedia CIRP 67 (2018) 278 – 283

In the following section, the requirements for the learning
algorithm are defined. Moreover, the theoretical background of
the learning algorithm is explained. The results and verification
with benchmark functions and milling stability data is presented
in Section 3. Finally, a conclusion is given in section 4.

2. Learning algorithm

In this chapter, an overview of the underlying learning
algorithm and the specific requirements coming from the
application to milling stability prediction is given.

The learning algorithm should generate the SLD from
training data measured during the milling process. The spindle
speed, the cutting depth and cutting width can be calculated
with the method presented in [14] based on the ISO code or the
machine positions extracted from the control system. The
stability of the process is estimated based on vibration signals
as described in [15]. Therefore, we want to construct a function
from ℝm ℝ. Where m is the number of input values. In this
case m=3 (cutting depth x1, cutting width x2, spindle speed x3)
which should be assigned to the sensor value y. Consequently,
every training point P is a tuple of the input data (x1, x2, x3) and
the output data y (see equation (1)).

),,,(321 yxxxP (1)

The algorithm combines the advantages from reinforcement
learning [16, 17] and nearest-neighbor method [18].

2.1. Requirements and assumptions

The first assumption is that the sensor value is steady. Small
changes of the process parameters only lead to small changes
of the sensor value [15]. The next assumption is that two
training points only contain local information, and the larger
the distance between them, the smaller the link between them.

The algorithm should collect data during the regular milling
process and adapt itself continuously without storing all data.
Therefore, it should generalize the data before storing the data
in the knowledge base. This implies, that the algorithm must be
able to process a sorted, incomplete set of input data, because
not all combinations of input parameters are covered during the
milling process.

The learning algorithm gives an output for each input vector,
regardless of whether it has converged or not. The incomplete
input set explained above leads to untrained regions, thus a trust
criterion to judge the reliability of the output is essential for the
application of the learned SLD.

The next requirement is that the algorithm should be robust
against incorrect data, as outliers may occur. Moreover, it
should be deterministic and fast enough to run on the control
system of the milling machine.

2.2. Knowledge base

To establish the mathematical knowledge base, the
definition area is uniformly distributed in states, as it is known

from reinforcement learning. Each state represents a memory
and stores the information of local training data. Similar to the
human learning process, each experience affects suitable local
memories. Therefore, the learning process can be described as
the calculation of many weighted averages (2).

all

m

all

m

m

m

m P

i iiikk

i

P

i iiikk

kk

kk
kk

xxx

yxxx

D

N
V

1 ,3,2,1,..,

1 ,3,2,1,..,

,..,

,..,
,..,

),,(

),,(

1

1

1

1

1
 (2)

Where the state value Vk1,..,km represents the memory at the state
k1,..,km. The position of a state in the definition area is described
by the vector (k1,..,km). The weights γk1,..,km depend on the
distance dk between the state k1,..,km and the input parameters
of the training point i. For an easier notation we replace k1,..,km

by k. For γk we use a decay function, which calculates the
weight dependent on the distance dk between state k and input
(x1, x2, x3).

In section 2.1 continuous adaption of the function without
storing all training data is requested. This is the reason why we
store denominator Dk and numerator Nk separately. Thus, we
can add a new summand to the denominator Dk and the
numerator Nk and have the same behavior as calculating Vk with
all stored training data (equation (2)). The continuous learning
process of all states k with a new training point i follows the
rule (3)

),,(

),,(

,3,2,1,,

,3,2,1,,

iiikoldknewk

iiiikoldknewk

xxxDD

yxxxNN
 (3)

Using Gaussian function (4) for γk, the parameter σk controls
the influence area of a training point. To ensure a uniform
sensitivity for all training data σk should be chosen.

22
321 /),,(

321),,(kk xxxd
k exxx (4)

For each training step, every state has to be updated.
Therefore, the calculation time increases linearly with the
number of states. If the resolution of every component
(k1, .., km) should be increased, the number of states increases
with . To decrease the calculation time only
the states near the input can be updated. Every point is
multiplied with the weight γk. As γk is a decay function, it is
close to 0 for states, far away from the input. Thus, only the
states around the input vector, where γ>γmin or the distance
d>a σk. are updated. Suitable values are a =2, which leads to
γmin=0,02. The calculation time is now independent from the
number of states. With this modification, the Gaussian decay
function γk is given by (5).

kk

kk
xxxd

k
ad

adexxx
kk

0
),,(

22
321 /),,(

321 (5)

Other decay functions γ with limited range can be used as
well. Especially piecewise defined polynomial function with

Download English Version:

https://daneshyari.com/en/article/8050291

Download Persian Version:

https://daneshyari.com/article/8050291

Daneshyari.com

https://daneshyari.com/en/article/8050291
https://daneshyari.com/article/8050291
https://daneshyari.com

