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Abstract 

The productivity of milling machines is limited by chatter vibrations. Stability lobe diagrams (SLD) allow the selection of suitable process 
parameters to maximize the productivity. However, the calculation of SLDs is very time-consuming and requires complex experiments. In this 
article a new online learning method is presented, which allows the calculation of SLDs during the production process. The algorithm is a 
combination of reinforcement learning and nearest-neighbor-classification and allows the estimation of the stability border based on measured 
vibration signals during machining. The proposed algorithm is capable of being continuously trained with sorted input data. A trust criterion is 
introduced, which allows judging the prediction quality of the algorithm. The algorithm is validated with analytical benchmark functions and 
with a 2-DOF milling stability simulation. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing 
Engineering. 
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1. Introduction 

Chatter vibrations are one of the most important factors 
limiting the productivity of machining industry. They cause 
poor surface quality, increase tool wear and can even cause 
damages on the machine tool. Chatter vibrations are self-
excited vibrations, caused by the interaction of the cutting edge 
with the surface left by the previous cut and the flexibility of 
the machine structure [1, 2]. The chatter effect is a feedback 
with time delay caused by the rotational speed of the spindle 
and excited by the cutting forces. Therefore, the occurrence of 
chatter in milling operations depends on the process parameters 
(spindle speed, cutting depth, and cutting width), the tool-
material-combination and the dynamics of the machine tool 
system [3, 4]. To ensure a stable, chatter free machining, the 
process parameters are often chosen very conservatively. 

To avoid chatter, active control strategies can be used for 
varying the spindle speed in order to avoid the self-excitation 
[5, 6] or for changing the spindle speed to a spindle speed which 
is stable [7, 8].  

An optimal spindle speed, cutting depth and cutting width 
can also be selected based on the stability lobe diagram (SLD) 
[4]. Each combination of spindle speed, cutting depth and 

cutting width can be either classified as stable or unstable. This 
information can be represented in a SLD, separating the stable 
and unstable regions. The knowledge of the stability limit 
allows the selection of process parameters for maximizing the 
productivity. There exist several possibilities of generating 
SLDs. The SLD can be calculated based on the stability of the 
mathematical model with time delay [9, 10]. This demands a 
very accurate model. An experimental approach avoids the 
modelling by applying test cuts for different spindle speeds and 
cutting depths [11, 12]. The model-based as well as the 
experimental approach suffer from the additional effort of 
identifying the model or the SLD. Moreover, the SLD is only 
valid for the timeframe, in which the experiments were 
performed, as the machine behavior can change over time [13].  

In this paper, an approach to continuously learn the SLD 
during productive milling is presented. The learning algorithm 
allows the prediction of the stability border based on measured 
vibration signals. The application during productive milling 
leads to sorted input data and an incomplete training set. The 
algorithm can be trained with incomplete, sorted training data 
and the proposed trust criterion allows to judge the prediction 
reliability. 
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In the following section, the requirements for the learning 
algorithm are defined. Moreover, the theoretical background of 
the learning algorithm is explained. The results and verification 
with benchmark functions and milling stability data is presented 
in Section 3. Finally, a conclusion is given in section 4. 

2. Learning algorithm 

In this chapter, an overview of the underlying learning 
algorithm and the specific requirements coming from the 
application to milling stability prediction is given.  

The learning algorithm should generate the SLD from 
training data measured during the milling process. The spindle 
speed, the cutting depth and cutting width can be calculated 
with the method presented in [14] based on the ISO code or the 
machine positions extracted from the control system. The 
stability of the process is estimated based on vibration signals 
as described in [15]. Therefore, we want to construct a function 
from ℝm ℝ. Where m is the number of input values. In this 
case m=3 (cutting depth x1, cutting width x2, spindle speed x3) 
which should be assigned to the sensor value y. Consequently, 
every training point P is a tuple of the input data (x1, x2, x3) and 
the output data y (see equation (1)). 
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The algorithm combines the advantages from reinforcement 
learning [16, 17] and nearest-neighbor method [18].  

2.1. Requirements and assumptions 

The first assumption is that the sensor value is steady. Small 
changes of the process parameters only lead to small changes 
of the sensor value [15]. The next assumption is that two 
training points only contain local information, and the larger 
the distance between them, the smaller the link between them. 

The algorithm should collect data during the regular milling 
process and adapt itself continuously without storing all data. 
Therefore, it should generalize the data before storing the data 
in the knowledge base. This implies, that the algorithm must be 
able to process a sorted, incomplete set of input data, because 
not all combinations of input parameters are covered during the 
milling process. 

The learning algorithm gives an output for each input vector, 
regardless of whether it has converged or not. The incomplete 
input set explained above leads to untrained regions, thus a trust 
criterion to judge the reliability of the output is essential for the 
application of the learned SLD. 

The next requirement is that the algorithm should be robust 
against incorrect data, as outliers may occur. Moreover, it 
should be deterministic and fast enough to run on the control 
system of the milling machine.  

2.2. Knowledge base 

To establish the mathematical knowledge base, the 
definition area is uniformly distributed in states, as it is known 

from reinforcement learning. Each state represents a memory 
and stores the information of local training data. Similar to the 
human learning process, each experience affects suitable local 
memories. Therefore, the learning process can be described as 
the calculation of many weighted averages (2). 
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Where the state value Vk1,..,km represents the memory at the state 
k1,..,km. The position of a state in the definition area is described 
by the vector (k1,..,km). The weights γk1,..,km depend on the 
distance dk between the state k1,..,km and the input parameters 
of the training point i. For an easier notation we replace k1,..,km 

by k. For γk we use a decay function, which calculates the 
weight dependent on the distance dk between state k and input 
(x1, x2, x3).  

In section 2.1 continuous adaption of the function without 
storing all training data is requested. This is the reason why we 
store denominator Dk and numerator Nk separately. Thus, we 
can add a new summand to the denominator Dk and the 
numerator Nk and have the same behavior as calculating Vk with 
all stored training data (equation (2)). The continuous learning 
process of all states k with a new training point i follows the 
rule (3)  
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Using Gaussian function (4) for γk, the parameter σk controls 
the influence area of a training point. To ensure a uniform 
sensitivity for all training data σk  should be chosen. 

22
321 /),,(

321 ),,( kk xxxd
k exxx                  (4) 

For each training step, every state has to be updated. 
Therefore, the calculation time increases linearly with the 
number of states. If the resolution of every component 
(k1,  .., km) should be increased, the number of states increases 
with . To decrease the calculation time only 
the states near the input can be updated. Every point is 
multiplied with the weight γk. As γk is a decay function, it is 
close to 0 for states, far away from the input. Thus, only the 
states around the input vector, where γ>γmin or the distance 
d>a σk. are updated. Suitable values are a =2, which leads to 
γmin=0,02. The calculation time is now independent from the 
number of states. With this modification, the Gaussian decay 
function γk is given by (5).  
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Other decay functions γ with limited range can be used as 
well. Especially piecewise defined polynomial function with 
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