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a b s t r a c t 

The exponential distribution is commonly used to model electronics components and 

systems, mechanical fatigue failures, and some corrosion processes that usually do not 

wear out until long after the product’s expected life span. Herein, based on a lifetime- 

performance index, we design acceptance-sampling plans for an exponential population 

with and without censoring using statistical and decision-theoretic methodologies that 

minimize the number of failures required during inspection. Moreover, the performance of 

established sampling plans is compared with that of the recently proposed approximation 

approach with full-ordered observed exponential data. We also investigate the industrial 

applicability of our recommended sampling plans in a case study. To encompass more real 

applications, the extension of the methodologies to the two-parameter Weibull distribution 

is also included. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Manufacturers need quality (reliability) information before releasing a product. Potential customers require this informa- 

tion before purchasing a product. Thus, quality inspection and reliability testing are necessary to demonstrate and assure 

product quality and reliability [1] . Acceptance-sampling plans have been widely applied for both purposes. Such plans assist 

in determining an optimal decision based on economic considerations, thereby guaranteeing a quality (reliability)-related 

quantity of interest (called a process parameter) that meets or exceeds a specified requirement at a desired level of confi- 

dence. 

In this paper we are dealing with product’s lifetime-performance evaluation. Some phrases and words will be used 

interchangeably, so we must mention here to avoid further comprehension problems and redundancies. Product lifetimes 

are both reliability and quality characteristics; thus, “reliability” and “quality” are not distinguished. Furthermore, lifetime 

data are obtained through lifetime testing that could equally well be called reliability testing in the reliability field or qual- 

ity inspection in the quality field; thus, “lifetime test,” “reliability test,” and “quality inspection” are equivalent. In addition, 

when dealing with the topic of acceptance-sampling plans, “accepting or rejecting the population” is jargon in reliability 

testing [2] , whereas “accepting or rejecting the batch (lot)” is widely used in quality inspection; thus “population,” “batch,”

and “lot” are interchangeable [3] . The above statements are also implicitly emphasized in [1] . 
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Quantification of the location and dispersion parameters is central to understanding the quality of a process. In practice, 

the process mean and standard deviation are unknown; thus, a random sample is required to estimate the unknown param- 

eters. However, determining the correct sample size can be critical because the tests are usually expensive and obtaining 

prototypes is often difficult. If the sample size used is too small, little information can be obtained from a test, limiting ones’ 

ability to draw meaningful conclusions; however, if the sample is too large, information obtained through the test might be 

beyond what is required, thereby incurring unnecessary costs [4] . 

Traditionally, there are two methods for determining the correct sample size required in a reliability test: an estimation 

approach of unknown process parameters based on a confidence interval [5] and a risk-control approach for hypothetical 

process parameters based on controlling Type I and Type II errors [6] . Practically, however, the estimators of the unknown 

process parameters used in either case are not unitless and sometimes are not convenient summary statistics in a plant or 

supply base for which various characteristics with disparate metric measures are considered [7] . Process capability indices 

are dimensionless quantities that measure the relationships between quality-characteristic specification limits and actual 

performance of an in-control process [8-10] . These indices have played an integral role in continuously improving product 

quality and reliability. 

However, most indices that have been applied thus far assume that quality-characteristic measurements are normally 

distributed [11-15] . Generally, product lifetime T with only positive values is the-larger-the-better type of quality character- 

istic. It inherits the properties of an exponential, gamma, or Weibull distribution [16] . The exponential distribution is widely 

used to model electronic components and systems, mechanical fatigue failures, and some corrosion processes that usually 

do not wear out until long after the product’s expected life span in which they are installed [17] . It is also considered as an 

excellent model for the relatively stable period of low failure risk, which characterizes the bathtub curve’s middle portion. 

This phase corresponds to the product’s useful life and is known as the curve’s intrinsic failure portion [6] . 

Currently, many devices using advanced manufacturing technologies have high quality and a long lifetime T . Collect- 

ing complete item lifetimes for a life test is time-consuming and expensive. Consequently, practitioners create acceptance- 

sampling plans for life testing with failure-censoring schemes and make a proper decision regarding lot sentences as soon 

as cumulative life information is sufficient [18] . Herein, we consider Type II right censoring (failure-censoring scheme), re- 

ferring to a situation in which only the s smallest lifetimes t (1) ≤ ... ≤ t ( s ) in a random sample of n are observed; here, s is 

a specified integer between 1 and n . This censoring scheme arises when n individuals begin a study at the same time, with 

the study terminating once s lifetimes (failures) have been observed [19] . 

The lifetime-performance index C L , a type of process capability index developed by [7,20] , measures the performance of 

a process with a nonnegative lifetime characteristic T for which a lower specification limit L has been set. Several studies 

have focused on the parameter-estimation and hypothesis-testing approaches for the unknown C L index based on confi- 

dence intervals [21-23] ; however, examination has been limited to a unilateral viewpoint of risk either from the producer 

or consumer. 

Recently, Aslam et al. [24] used an approximation approach for remedying data to develop C L -similar sampling plans for 

an exponential population. Their idea follows the research of Johnson and Kotz [25] and Nelsons [26] , in which a power 

function is first used to transform exponentially distributed lifetime data into a Weibull distribution and then the best 

power form is selected to approximate the Weibull distribution with a normal distribution. A similar technique was applied 

recently to control charts for monitoring the quality characteristic with an exponential distribution [27,28] . However, the 

approximation approach is limited because it does not address the theoretical and practical interest problems, e.g., estimator 

properties, estimator’s exact sampling distribution, and lifetime data with censoring information. 

Therefore, based on the lifetime-performance index, we design acceptance-sampling plans for an exponential population 

with and without censoring using statistical estimation and theoretical decision-making methodologies that minimize the 

number of failures required for an inspection. The performance of established sampling plans is also compared to a recently 

proposed approximation approach [24] with full-ordered observed exponential data. The rest of this paper is organized as 

follows. Section 2 briefly introduces C L and emphasizes the advantages of using it. The estimation of C L for exponentially dis- 

tributed product lifetime with Type II censoring is also provided. Section 3 incorporates C L into sampling plans for submitted 

lots with Type II censoring. The plan parameters are determined using an optimization model with nonlinear constraints. 

Moreover, decision criteria’s determination is analyzed and discussed. Section 4 compares our proposed exact sampling plans 

to a recently published approximation approach with full-ordered observed exponential data. Section 5 presents an exam- 

ple illustrating the proposed sampling plan’s application. Section 6 extends the sampling plans to product lifetime with a 

two-parameter Weibull distribution. Conclusions are drawn in Section 7 . 

2. Lifetime-performance index for exponentially distributed lifetime data 

The index C L was developed to provide a dimensionless quantity for measuring the performance of a process with a 

nonnegative lifetime characteristic T that allows only a lower lifetime limit L . It is defined as (see [20] ) 

C L = 

μT − L 

σT 

, (1) 

where μT and σ T are the mean and standard deviation of the lifetimes, respectively. 
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