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Abstract

In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow-fast modified
Leslie-Gower model via the entry-exit function and geometric singular perturbation theory. Numerical
simulations are also carried out to illustrate our theoretical result.
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1. Introduction

Alaoui and Okiye [3] in 2003 proposed the next modified Leslie-Gower model:
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where x represents the prey density and y the predator density, and the parameters r1, b1, a1, k1, 2, ag, ks
are positive and have biological meaning described as follows. The parameters r; and b; represent the
intrinsic growth rate and the strength of competition among individuals for the prey, respectively. The
natural growth rate of the predator is given by 75, while as and a; are respectively the maximum values of
the per capita reduction rates of the predators and prey species. The parameters k; and ks measure the
extent to which environment provides protection to prey x and predator y, respectively.

System (1.1) has been investigated by several researchers in different aspects. Alaoui and Okiye [3]
studied the boundedness of solutions and global stability of the positive equilibrium points of the system.
By utilizing the coincidence degree theorem and Lyapunov function, Zhu and Wang [20] obtained some
sufficient conditions for the existence and global attractivity of positive periodic solutions of the system.

Now consider the rescaling
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Substitute (1.2) into system (1.1) and still use z and y to denote Z and ¥, it yields
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