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a b s t r a c t

Lifetime data collected from reliability tests or field operations often exhibit significant heterogeneity
patterns caused by latent factors. Such latent heterogeneity indicates that lifetime observations may
belong to different sub-populations with different distribution parameters. As a result, the assumption
on data homogeneity adopted by conventional reliability modeling techniques becomes inappropriate.
Effective identification and quantification of such heterogeneity is crucial for more reliable model esti-
mation and subsequent optimal decision making in a variety of reliability assurance activities. This
research proposes a full Bayesian modeling framework for statistical hazard modeling of latent hetero-
geneity in lifetime data. The proposed framework is generic and comprehensive by systematically
addressing different modeling aspects, which include modeling sub-populations with different hazard
rates changing over time and different responses to the same stress factors, determining the number of
sub-populations, identifying the most appropriate sub-population model structures, estimating model
parameters and performing predictive inference. A numerical case study demonstrates the validity and
effectiveness of the proposed approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical analysis of lifetime data is important in reliability
assessment, prediction and improvement. Lifetime data obtained
from laboratory tests in the design and development phase often
provide the basis for reliability assessment, verification and pre-
diction. Lifetime data collected from manufacturers' follow-up
actions in the field operational phase, such as warranty claims
and maintenance records, are also the important feedback infor-
mation. Such feedback information helps manufacturers to
improve the product design and manufacturing and to establish
various optimal service policies.

Conventional statistical modeling of lifetime data assumes that
the underlying product population is homogeneous. However, in
real-world practice, lifetime data are often heterogeneous and the
homogeneity assumption does not hold. A typical example is that,
in the semiconductor industry, some units of integrated circuits
belong to a weak sub-population and fail much earlier than other
units under the same usage conditions. This difference in lifetime
distribution is due to defective internal bonds or contaminator
corrosions resulting from manufacturing defects [1]. Such

phenomenon becomes even more obvious for maturing manu-
facturing processes where evolving and new technologies are
applied [2]. Root cause analysis of all failures is often expensive
and time-consuming. Therefore, there is limited ways to classify
the product units into different sub-populations and specify their
sub-population memberships prior to the statistical lifetime
modeling. In this paper, the phenomenon of product units with
heterogeneous lifetime distribution but unknown sub-population
membership is defined as latent heterogeneity.

To account for the heterogeneity, different modeling approaches
have been developed and studied. One popular approach is based on
the hazard modeling. Since the hazard function of the heterogeneous
population often exhibits patterns that can be broken down into
segments, change-point models were employed to capture the hazard
with piecewise functions separated by change points [6,7]. These
change-point based methods cannot be applied in cases where a
single hazard function is defined over the entire lifetime domain. To
overcome this limitation, frailty models were introduced to construct a
single hazard model with a multiplicative random variable (i.e., so-
called frailty term) to represent unobserved heterogeneity [8,9].
However, frailty models often require known sub-population mem-
bership of each product unit. Such assumption is reasonable in some
medical studies [10], since patients' background information may be
used for classification. In some engineering applications, a unit's
membership is often unknown and thus, latent heterogeneity is
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inevitable. Instead of modeling lifetime data with a hazard function,
another popular approach is to utilize mixture of lifetime distributions,
which represent a heterogeneous population with a finite number of
homogeneous sub-populations. Distributions such asWeibull [3,4] and
Lognormal [5] are employed to model the lifetimes of each sub-
population. Such formulation allows both mathematical simplicity of a
single model defined on the entire domain and practical concerns of
latent heterogeneity.

Both the aforementioned approaches have their own advan-
tages. Mixture distribution approaches quantify the proportion of
each sub-population in the overall population. Such proportion
information is useful in the evaluations of product design and
production performance [1]. Hazard modeling approaches, on the
other hand, are more informative in capturing the underlying
failure mechanism [11]. Thus, it is desirable to combine both
advantages in heterogeneity modeling. To achieve this, this paper
proposes a hazard modeling approach with the formulation of
mixture distributions. Specifically, the heterogeneous population
is represented by a mixture of a finite number of homogeneous
sub-populations while hazard modeling is realized within each
sub-population. Existing researches along this direction are lim-
ited and mainly focused on model estimation. Attardi et al. [12]
analyzed interval-censored data through maximum likelihood
estimation of the mixture of Weibull regression. Rosen and Tanner
[13] considered the mixture of Cox proportional hazards model
under the Frequentist framework. For model estimation compar-
ison among different non-Bayesian estimation methods, see [14]
and references therein.

In this paper, a full Bayesian modeling framework is proposed
by comprehensively addressing modeling issues, such as model
estimation, model selection, and model prediction, in a systematic
manner. Bayesian inference is considered due to its advantage of
incorporating possible prior knowledge and its practical con-
venience in different aspects of modeling (see details in Section 3).
Specifically, mixture model formulation is considered for modeling
heterogeneity and each sub-population is modeled by a specific
hazard regression. Hazard regression is more generic in a sense
that Weibull regression [12] and Cox proportional hazards model
[13] can be treated as its special case. Challenges and difficulties
involved in model estimation and model selection are also
addressed comprehensively. The proposed modeling approach
features in (i) modeling each sub-population with a hazard
regression to quantify possible influence of reliability impact fac-
tors; (ii) considering different inherent hazard rates and different
responses to the same reliability impact factors among sub-
populations; (iii) considering Bayesian modeling approach by
incorporating possible prior knowledge into the model formula-
tion and estimation; (iv) providing a coherent framework by
comprehensively addressing model construction, estimation,
selection and prediction. For practitioners, the proposed work
provides a complete procedure (e.g., model construction, estima-
tion, selection, prediction) in analyzing heterogeneous lifetime
data. It also allows practitioners to specify their domain knowl-
edge as priors and incorporate them into the data analysis pro-
cedure. The rest of paper is organized as follows. Section 2 intro-
duces the proposed model. Section 3 discusses a variety of mod-
eling issues. Section 4 provides further illustration with a numer-
ical case study and Section 5 draws the conclusion.

2. Model formulation

Consider a population consisting of m homogeneous sub-
populations. Units from a certain sub-population, j, exhibit simi-
lar failure characteristics and thus their lifetimes can be assumed
as independent and identically distributed random variables with

probability density function, fj(t), reliability function, Rj(t), and
hazard function, hjðtÞ; j¼ 1;…;m. Hazard regression can be used to
model reliability of units from a homogeneous sub-population by
explicitly taking into account the influence of possible reliability
impact factors. Specifically, a hazard function of the jth sub-
population can be expressed as

hjðt jβjÞ ¼ hbj ðtÞexpðβ
T
j xÞ; j¼ 1;…;m; ð1Þ

where hbj ðtÞ is the baseline hazard function, x and βj are p� 1
vectors of covariates (i.e., reliability impact factors) and the cor-
responding covariate coefficients. Baseline hazard function corre-
sponds to the situation where all covariates are equal to zero, i.e.,
hbj ðtÞ ¼ hjðt jx¼ 0Þ. Covariate coefficients explicitly quantify the

influence of covariates on the hazard rate. hb
j ðtÞ and βj are identical

for units within a sub-population but may be different for units
across sub-populations. A typical example is a population con-
sisting of a small proportion of weak units due to the imperfec-
tions in manufacturing processes. As opposed to the remaining
quality products with increasing failure rate (IFR, e.g.,
∂hb1ðtÞ=∂t40), such small proportion of defective units may have
significantly higher hazard rates in their early period of usage and
exhibit decreasing failure rate (DFR, e.g., ∂hb2ðtÞ=∂to0). The
impacts of stress factors on their hazards will also be different
from those on quality products, i.e., β1aβ2.

Hazard regression is employed to model reliability of each
individual homogeneous sub-population due to its flexibility in
quantifying influences of covariates, x, and its great flexibility in
representing many widely used models in reliability engineering
and survival analysis. If hbj ðtÞ is modelled parametrically, it can
represent lifetime distributions such as exponential, Weibull, and
extreme value. If hb

j ðtÞ is modelled non-parametrically, it becomes
a Cox proportional hazard model proposed by Cox [15]. With each
sub-population represented by a hazard regression model, the
lifetime distribution, f(t), of the overall population is given by

f ðt jx;ΘÞ ¼
Xm
j ¼ 1

wjf jðt jx;βjÞ; ð2Þ

where wj is the mixing proportion of the jth sub-population andΘ
denotes a collection of all unknown parameters, i.e.,
Θ¼ fwj;h

b
j ;βj; j¼ 1;…;mg. f jðt jx;βjÞ is the conditional probability

density of the jth sub-population and can be uniquely determined
by model (1) through f jðt jx;βjÞ ¼ hjðt jx;βjÞ expð�

R t
0 hjðsjx;βjÞ dsÞ.

Eqs. (1) and (2) constitute the proposed model of modeling life-
time heterogeneity. It is noted that the proposed model has some
connection with the discrete frailty model in [16]. In particular, it
can be reduced into the discrete frailty model if the membership of
each unit is given. The proposition below specifies their relation-
ships followed with some interpretations.

Proposition. Hazard function h(t) based on Eqs. (1) and (2) can be
reduced into the discrete frailty model if the following two conditions
hold (see proofs in Appendix A):

(i) hb
j ðtÞ=hbmðtÞ ¼ Cj, j¼ 1;…;m�1, where Cj's are constants and

Cm¼1;
(ii) βj ¼ β, 8 j¼ 1;…;m.

And the resulting discrete frailty model is given by

hðt jVÞ ¼ Vh
bðtÞexpðβTxÞ; ð3Þ

where h
bðtÞ ¼ Pm

j ¼ 1 wjh
b
j ðtÞ, V is a discrete random variable follow-

ing the categorical distribution, i.e., PrðV ¼ CjPm

j ¼ 1
wjCj

Þ ¼wj, j¼1,…,m,
and satisfying EðVÞ ¼ 1.
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