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Filters are essential for guaranteeing the good performance of microirrigation systems.

Pressure losses across filters should be known for the proper design and management of

this irrigation equipment. Pressure losses produced by filtering media in sand filters can be

computed using Ergun or KozenyeKarman equations, which require knowledge, among

other parameters, of the sphericity of the filter medium. As this parameter is not easy to

determine, it is useful to explore the performance of alternative computing methods that

can avoid requiring knowledge of sphericity. In this paper, taking as starting point the

nonparametric machine learning approach known as the gradient boosted regression tree

(GBRT) approach and hybridising it with the differential evolution (DE) technique, the

pressure drop in sand filters used in microirrigation has been modelled. For different

filtering materials such as modified glass, crushed glass, silica sand and glass micro-

spheres, experimental data of pressure drop for velocities between 0.004 and 0.025 m s�1

was collected and the model built. The results demonstrated that DEeGBRTebased model

was able to accurately predict pressure drop. The model also allowed ranking of the

importance of the independent variables examined within the model. Taking into account

this ranking, and using only the main variables, a simplified method with an improved

coefficient of determination was constructed.

© 2018 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Proper irrigation water filtration is essential to ensure the

successful continuous long-term operation of microirrigation

systems (Clark, Haman, Prochaska, & Yitayew, 2007). By

following good maintenance practises, which includes filtra-

tion, the longevity of some subsurface microirrigation sys-

tems have reached 26.5 years (Lamm & Rogers, 2017). Screen,

disc, media and hydro-cyclone filters are common filter types

that are used in microirrigation systems. The choice of filter
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type will basically depend on the quality of water source, the

flow rate of the irrigation systemand the desired filteredwater

quality for avoiding emitter clogging (Clark et al., 2007).

Irrigation engineers require knowledge of the pressure

drop across the filter to properly design and manage this

important system component which is related to water and

energy consumption as well as pollutant removal efficiency

(Duran-Ros, Puig-Bargu�es, Arbat, Barrag�an, & Ramı́rez de

Cartagena, 2009). Mathematical models have been developed

using dimensional analysis for describing pressure drops

across screens (Wu, Chen, Liu, Yin,&Niu, 2014b; Zong, Zheng,

Liu & Li, 2015), disc (Wu et al., 2014a; Yurdem, Demir, &

Degirmencioglu, 2008), hydrocyclone (Yurdem et al., 2008)

and in sand media filters (Elbana, Ramı́rez de Cartagena, &

Puig-Bargu�es, 2013). These models did not consider the spe-

cific effect of the different filter components (filtration zone

and auxiliary elements) on pressure loss. In sandmedia filters,

pressure loss clearly vary across the filter media, the under-

drain and diffuser platter, and the backflushing valve (Bov�e

et al., 2015b; Burt, 2010; Mesquita, Testezlaf, & Ramirez, 2012).

Bov�e et al. (2015a) experimentally analysed the pressure

drop across different sand and recycled glass media in a

microirrigation sand filter. Although the Ergun equation

showed the best prediction accuracy for predicting the pres-

sure drop, multi linear regression equations had better per-

formance than the KozenyeCarman equation, which is a

simplification of the Ergun equation. However, these

equations require parameters defining the filtermedia such as

equivalent diameter and sphericity which are difficult to

obtain.

Garcı́a-Nieto et al. (2017) used a hybrid model artificial bee

colony (ABC)-multivariate adaptive regression splines (MARS)

which satisfactorily computed pressure loss across filtration

beds without the need for sphericity. This work suggests that

other alternative methods, specifically a hybrid methodology

that combines the gradient boosted regression tree (GBRT)

approach with the differential evolution (DE) optimisation

algorithm (Feoktistov, 2006; Price, Storn, & Lampinen, 2005;

Rocca, Oliveri, & Massa, 2011; Storn & Price, 1997), could also

be used to predict pressure drops in the granular filters used in

microirrigation systems.

GBRT models are supervised machine learning procedures

that can be used for multivariate classification and regression

(Bühlmann&Hothorn, 2007; Friedman, 2002;Hastie, Tibshirani,

& Friedman, 2003; Schapire, 2003; Vapnik, 1998). GBRT models

build competitive, highly robust procedures that are particu-

larly appropriate for treating not very clean data (Hastie et al.,

2003). They are very flexible models that can be easily be cus-

tomised for any data-driven task. They are straightforward to

implement and have been very successful in data-mining and

machine-learningchallenges (Natekin&Knoll, 2013).Oneof the

reasons for their success could be that tree boosting takes the

bias-variance trade-off into consideration while fitting the

models (Nielsen, 2016). For example, GBRT models have been

Nomenclature

ABC Artificial bee colony

bjm Constant value calculated for the region Rjm

Co Cover of the GBRT algorithm

CART Classification and Regression Trees

Deq Equivalent diameter, m

DE Differential evolution

Fm Weak model that predicts the mean y of the

training set

Fq Frequency of the GBRT algorithm

F0ðxÞ Constant functionbFðxÞ an estimate of the function F*ðxÞ
Ga Gain of the GBRT algorithm

GA Genetic algorithm

GBRT Gradient boosted regression tree

GR Parameter that controls the recombination rate

H Set of arbitrary differentiable functions

h Weak learner function

hiðxÞ Weighted sum of functions

hmðxÞ Decision tree

Jm Number of terminal nodes in the tree model

NP Noisy random vectors

L( ) Loss function

m Weighted medium mass, kg

mog Overall mass of the grains, kg

MARS multivariate adaptive regression splines

MCW Minimum child weight of GBRT algorithm

MDS Minimum delta step of GBRT algorithm

n Number of observed data

N Number of grains

Nrounds Maximum number of iterations of the GBRT

algorithm

p Index of the individual in the population

PSO Particle swarm optimization

rim Pseudo-residuals

RMSE Root mean square error

R2 Coefficient of determination

SR Subsample ratio of the GBRT algorithm

SStot Total sum of squares

SSreg Regression sum of squares

SSerr Residual sum of squares

tgm Trial vectors

Vm Medium volume, m3

Vw Volume of the additional water, m3

Vf Final volume of the water and medium mixture,

m3

V Mean flow velocity, m s�1

xg
p Original vectors

ðDp=DLÞ Pressure drop per unit length

D Step value over each tree's weight estimation

ε Medium porosity

h Learning rate of GBRT algorithm

rb Bulk density of each medium, kg m�3

rr Real density of each medium, kg m�3

f Sphericity factor

g Minimum loss reduction of the GBRT algorithm

U Penalty function that controls the model

complexity
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