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A B S T R A C T

This paper presents an orbit estimation using non-simultaneous horizon detector measurements in the presence
of uncertainties in the celestial body rotational velocity and its geometrical characteristics. The celestial body is
modeled as a tri-axial ellipsoid with a three-dimensional force field. The non-simultaneous modelling provides
the possibility to consider the time gap between horizon measurements. An unscented Kalman filter is used to
estimate the spacecraft state variables and the geometric characteristics as well as the rotational velocity vector
of the celestial body. A Monte-Carlo simulation is implemented to verify the results. Simulations showed that
using non-simultaneous horizon vector measurements, the spacecraft state errors converge to zero even in the
presence of an uncertain geometry and rotational velocity of the celestial body.

1. Introduction

Autonomous orbit estimation is a key element of modern space
missions. For planet Earth, the use of the Global Positioning System
(GPS) for the orbital navigation at low altitudes [1–3] is conventional.
For high altitude missions the use of similar constellation-based navi-
gation methods is proposed and tested as well [4,5]. However, the use
of GPS does not make the satellite completely autonomous, since it is
related to the constellation of the GPS satellites and the constellation is
mostly navigated from ground stations [6]. On the other hand, relative
states of two (or more) satellites can be utilized for an orbit estimation,
independent of GPS satellites and/or ground stations [7–11]. Ad-
ditionally, natural properties of a planet, like its magnetic field [12,13],
atmosphere [14,15], or moons [16], can help to build an autonomous
orbit estimation procedure. Spacecraft navigation and determination of
Celestial Body (CB) characteristics can be autonomously accomplished
using the planet's geometric characteristics [17] or gravity field esti-
mation [18].

Horizon detectors are known for their ability of determining the
nadir vector. For nadir-pointing satellites, the nadir vector is frequently
utilized as a measurement to estimate the attitude [19]. Furthermore,
the nadir vector can be used to estimate the satellite orbit as well. For
Earth orbiting satellites, horizon detectors have been used for orbit
determination purpose assuming spherical [20–24], and non-spherical
Earth models [25]. Moreover, horizon sensors can be employed for
finding the solar direction as discussed in Ref. [26].

In this paper, an autonomous orbit estimation using discrete non-

simultaneous horizon detector measurements is addressed.
Additionally, it is shown that these measurements can be utilized in the
estimation of CB parameters; such as the semi-principal axes lengths
and the angular velocity. The CB is modeled as a tri-axial ellipsoid,
which is acceptable for most CBs in the solar system. The Unscented
Kalman Filter (UKF) [27–29] is utilized for the estimation of the state
and parameters in the presence of sensors noise and disturbances. The
performance of this state and parameter estimation has been verified by
the Monte-Carlo simulation. Thus, the main contributions of the paper
are: (1) Unlike the previous investigations the time delays between
horizon vector measurements are included, so the measurements are
non-simultaneous; (2) the CB is modeled as a tri-axial ellipsoid with
uncertain geometric characteristics that are augmented to the process
model and estimated using parameter estimation; (3) similarly, the
rotation of the CB about its primary axes is considered as an unknown
and estimated in the filtering procedure; (4) MacCullagh's formula [30]
is assumed as the governing gravitational dynamic model in the three-
dimensional force field; (5) for such a problem a measurement model is
proposed as an algorithm and UKF is utilized to overcome the non-
linearities.

The rest of the paper is organized as follows: First, the process
model is formulated using relative dynamics and MacCullagh's formula
as the gravitational model. Next, the measurement model is derived and
proposed as a unified algorithm. Section 4 reviews the UKF algorithm
and Section 5 includes the simulation results. Finally, concluding re-
marks are presented.
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2. Process model

It is assumed that the geometry and the rotational velocity of the CB
are not exactly known. Thus, by assuming the CB is a tri-axial ellipsoid,
the semi-principal axes lengths (a b c, , ), and its rotational velocity
vector (ω) are included in the state vector of the system for the esti-
mation purpose. In this manner, the process model can be summarized
as the following equation:

= + wx f x˙ ( ) (1)

where ≜ a b cx r r ω[ ˙ ]T T T T is the state vector including r and ṙ as
the position and velocity vectors of the spacecraft from the CB center of
mass [31]. The state vector is augmented by the CB angular velocity
and its semi-principal axes lengths to be estimated in the filtering
procedure. A Gaussian, zero-mean white process noise, N Q∼w (0, ),
with a time-invariant covariance, Q , is linearly added to the system of
equations. The vector function, f x( ), as the system differential equation
is defined as
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in which the state vector x is defined in a coordinate system associated
with frame A, attached to the CB, a Celestial Body-fixed Coordinate
System (CBCS). The Euler acceleration resulting from angular accel-
eration, = − ×a ω r˙eul. , the Coriolis acceleration, = − ×a ω r2 ˙cor. , and
the centrifugal acceleration, = − × ×a ω ω r( )cen. , are added to the two-
body dynamics. The angular velocity ≡ω ωA I/ is defined as the rotation
of the frame A with respect to the inertial frame, I . The disturbance
acceleration, adis., is defined using MacCullagh's formula [30]:
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for a CB with moments of inertia matrix J .

3. Measurement model

The horizon sensor is used for the purpose of this study. Thus, the
measurement is based on the horizon unit vector defined in an inertial
coordinate system, u. It is assumed that the attitude of the satellite has
been determined by alternative sensors such as star trackers and is
perfectly known. Thus, the horizon unit vector can be found in the
inertial frame. This horizon unit vector is modeled by a pair of spherical
angles. Therefore, the measurement model can be written as

= + vz h x( ) (4)

in which ≜ θ ϕz [ ]T is the measurement output vector, and is defined
to be the spherical angles of :
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1 (Fig. 1). The measurement
Gaussian zero-mean white noise in Eqn. (4), N �∼v (0, ), has a time-
invariant covariance � .

In order to define the measurement model, h x( ), the formula of the
horizon vector, u, as a function of the position vector of the satellite, r,
should be found. If the unit vector, u, is measured from the satellite at
the point, r, toward the ellipsoid horizon, the satellite position should
be located on a quadratic surface of the following form:

+ =Q Gr r 0T (6)

where,

= −Q L L L Luu u u( )T T

=G Lu uT

in which =L a b cDiag{[1/ 1/ 1/ ] }T2 2 2 . Parameters a, b, and c are the
lengths of the ellipsoid semi-principal axes. The derivation of Eqn. (6) is
provided in Appendix I. However, it can be intuitively shown that the
locus of the possible position vectors is a cylinder (Fig. 2).

Consider a horizon vector uRSW defined in the RSW coordinate
system. The RSW coordinate is defined such that its x axis is in the
direction of the position vector r, the z axis towards the orbital angular
momentum vector of the satellite, and the y axis completes the right-
handed coordinate system. The direction of the horizon vector is
measured by the horizon sensor and the selected vector is not ne-
cessarily a unit vector. Introducing uRSW by spherical angles yields:
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where θRSW and ϕRSW are defined with respect to the axes of the RSW
coordinate system. The angle ϕRSW is assumed to be predefined for the
satellite. In Eqn. (7), since the value of uRSW is not assigned, it is
assumed to be = θu secRSW RSW and then

= = =u θ u ϕ u ϕtan , sin , cosR
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in which ≜ u u uu [ ]RSW R S W T . The vector =uCBCS u u u[ ]x
CBCS

y
CBCS

z
CBCS

defined in CBCS can be related to uRSW as follows:

= Cu uCBCS
RSW
CBCS RSW (9)

in which CRSW
CBCS is the rotation matrix from RSW to CBCS that is obtained

from the estimated position and velocity vectors, and can be shown in
the following form:

Fig. 1. Defining vector u in terms of spherical angles.

Fig. 2. A horizon unit vector measurement, u, restricts the satellite position on
an elliptic cylinder.
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