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A B S T R A C T

We consider a gravitating system with triangular mass distribution that can be used as approximation of gravi-
tational field for small irregular celestial bodies. In such system, the locations of equilibrium points, that is, the
points where the gravitational forces are balanced, are analyzed. The goal is to find the mass distribution which
provides equilibrium in a pre-assigned location near the triangular system, and to study the stability of this
equilibrium.

1. Introduction

Due to constantly growing interest to exploration of small celestial
bodies, the importance of modelling complex gravitational fields in-
creases. In such modelling, approximation of small irregular celestial
bodies by gravitating bodies with triangular mass distributions can be
used, making the dynamics analysis for triangular bodies especially
relevant (see, e.g., [9,10,17,19–22]).

An important property of a complex non-central gravitational field is
possible existence of critical points in which the gravitational forces are
balanced; such positions are called equilibria. One can consider both
direct and inverse problems for existence of such equilibria. Within the
framework of the direct problem, the mass distribution is given, and the
equilibria are to be found. In Ref. [14] non-trivial critical points of the
gravitational field are found for a regular triangle with equal masses in its
vertices (see also [2,12,13]). When the degree of instability of the central
solution in the planar problem is equal to two, and the gravitational
potential at this point reaches a local maximum, the three detected
non-trivial equilibria are of the saddle type with degrees of instability
equal to one. For the inverse problem, the purpose is to find the mass
distributions that correspond to a pre-assigned equilibrium.

In the present paper, the inverse equilibrium problem is discussed.
The mass distributions for a triangular rigid body are found depending on
the location of the equilibrium points; stability of these equilibria is
studied.

2. Statement of the problem

Consider three homogeneous balls G 1, G 2, and G 3, defined by their
centres Q1, Q2, and Q3, fixed in the absolute space, radii R1, R2, and R3,
and masses m1, m2, and m3 respectively; the balls don't intersect each
other. The points Q1, Q2, and Q3 belong to the plane Π which is a sym-
metry plane of the system. The point Q of mass m moves in the gravita-
tional field of the above balls. Denote

ri ¼ QiQ
��! ; ρi ¼ ðri; riÞ1=2; M ¼ m1 þ m2 þ m3 6¼ 0; μi ¼ mi=M;

then the potential energy of Newtonian attraction reads

UG ¼ mMGU; U ¼ U1 þ U2 þ U3; (1)

Ui ¼ μiU
'
i; U '

i ¼

8>>><
>>>:

�1
ρi
; ρi � Ri

ρ2i � 3R2
i

2R3
i

; ρi < Ri

(2)

The first expression in (2) corresponds to the location of the point Q
outside the ball G i; the second one corresponds to the position ofQ inside
G i (Fig. 1).

At first glance, examination of motion inside a body makes little
sense; however “penetrable” bodies are used for modelling of dust clouds
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and galaxies (see, e.g. [8]).
To study existence and stability of equilibria, the first and second

derivatives of functions (2) have to be calculated. Let Ozxy be a reference
frame (RF) fixed in the triangle; the plane Ozx coincides with the plane Π
Then

OQ
�!

i ¼ qi ¼ ðzi; xi; 0ÞT ; OQ
�! ¼ q ¼ ðz; x; yÞT ;

and the expressions for derivatives are

∂Ui '
∂z ¼

8>>><
>>>:

z� zi
ρ3i

; ρi � Ri

z� zi
R3
i

; ρi < Ri

ðz; x; yÞ (3)

∂2U '
i

∂z2 ¼

8>>><
>>>:

ρ2i � 3ðz� ziÞ2
ρ5i

; ρi � Ri

1
R3
i

; ρi < Ri

ðz; x; yÞ (4)

∂2U '
i

∂z∂x ¼

8><
>:

�3
ðz� ziÞðx� xiÞ

ρ5i
; ρi � Ri

0; ρi < Ri

ðz; x; yÞ (5)

where notation ðz; x; yÞ denotes cyclical substitution of symbols z, x and
y.

Using (3), equilibria are found from the following system

∂U
∂p ¼ 0; p 2 fz; x; yg: (6)

Since Π is the plane of symmetry, the third equation of system (6)
possesses solution y ¼ 0. Later on, we consider only these solutions ðz;x;
0Þ; they are located in the plane Π. Taking into account the first and the
second equations from (6), one can write down equilibrium equations as

y ¼ 0; μ1
∂U '

1

∂p þ μ2
∂U '

2

∂p þ μ3
∂U '

3

∂p ¼ 0 p 2 fz; xg: (7)

3. Solution to the inverse problem

Let us choose a point Q0 ðz0; x0;0Þ on the plane Π and find mass pa-
rameters μi, i ¼ 1;2; 3, such as Q0 is an equilibrium. System (7) together
with relation

μ1 þ μ2 þ μ3 ¼ 1 (8)

is linear with respect to μ1, μ2, μ3. Using Cramer's rule, the solution of this
system can be represented as

μi ¼
Di

D
; i ¼ 1; 2; 3 (9)

D1 ¼ ∂U '
2

∂z
∂U '

3

∂x � ∂U '
2

∂x
∂U '

3

∂z ð1; 2; 3Þ

D ¼ ∂U '
1

∂z

�
∂U '

2

∂x � ∂U '
3

∂x

�
þ ∂U '

2

∂z

�
∂U '

3

∂x � ∂U '
1

∂x

�
þ ∂U '

3

∂z

�
∂U '

1

∂x � ∂U '
2

∂x

�
;

where ð1; 2;3Þ denotes cyclical substitution of the respective indices. If
D 6¼ 0, the solution of the inverse problem is found: for mass parameters
μi, i ¼ 1;2; 3 from ð9Þ Q0 ¼ ðz0; x0;0Þ is an equilibrium. Meanwhile, the
sign of μi, i ¼ 1;2;3 is not necessarily positive. For instance, if one as-
sumes that the radii of the balls are very small, then, to provide equilibria
at points located outside the triangle Q1Q2Q3, some negative masses are
required, which might appear strange. However, negative masses are
applied in modelling of gravitational fields for bodies of complex shape,
for example, to compensate for cavities or some volumes counted twice
(see, e.g. [1]). Moreover, mechanics of systems with negative masses,
both gravitational and inert, is the subject of active study in modern
celestial mechanics [3–5,15] and physics [18].

4. Degree of instability

The degree of instability for the above equilibria can be found by
examination of signs for the eigenvalues of Hessian for potential ð1Þ (see,
e.g. [6,11,16]). The respective characteristic polynomial reads

P'ðσÞ ¼ �σ3 þ p1σ2 � p2σ þ p3 ¼ det

0
@Uzz � σ Uzx Uzy

Uxz Uxx � σ Uxy

Uyz Uyx Uyy � σ

1
A:

(10)

Here Usp ¼ ∂2U
∂s∂p; s; p 2 fz; x; yg; the derivatives are calculated on the

intended equilibrium Q0 ¼ ðz0;x0;0Þ.
Calculations show that for y ¼ 0 some derivatives vanish, namely,

Uzy ¼ Uyz ¼ Uxy ¼ Uyx ¼ 0, and the polynomial P'ðσÞ takes the form

P'ðσÞ ¼ ðσ1 � σÞP2ðσÞ;
P2ðσÞ ¼ σ2 � c1σ þ c2;

σ1 ¼ Uyy

(11)

c1 ¼ Uxx þ Uzz; c2 ¼ UxxUzz � UzxUxz: (12)

Taking into account expressions (4), the value σ1 ¼ Uyy in the
expanded form can be written as

σ1 ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

μ1
ρ31

þ μ2
ρ32

þ μ3
ρ33
; ρi � Ri; i ¼ 1; 2; 3;

μ1
R3
1

þ μ2
ρ32

þ μ3
ρ33
; ρ1 < R1;

μ1
ρ31

þ μ2
R3
2

þ μ3
ρ33
; ρ2 < R2;

μ1
ρ31

þ μ2
ρ32

þ μ3
R3
3

; ρ3 < R3;

If μi � 0, i ¼ 1; 2; 3, the value of σ1 is non-negative. Thus, the problem
of studying the degree of instability is reduced to investigation of signs
σ2; σ3 of the polynomial P2ðσÞ. Note, that

σ1 þ σ2 þ σ3 ¼ Uyy þ Uxx þ Uzz:

This sum is always zero outside the balls, so there are always values of
opposite signs among σ1, σ2, and σ3. Therefore, the equilibrium is un-
stable (“Earnshaw's theorem” [7]), and the degree of instability χ is either
one or two: χ ¼ 1 or χ ¼ 2. (Note that inside any of the balls this is not the
case.)

Let us consider the equilibrium points outside the balls. Assume
σ1 > 0. Then

c1 ¼ σ2 þ σ3 < 0; (13)

Fig. 1. Gravitational potential of a penetrable homogeneous ball (2).
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