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The stability characteristics of a distributed consensus-based Kalman filter estimation and control scheme 
are studied through analytic and numerical means. This estimation scheme seeks to minimally reduce 
the necessary bandwidth for communication while maintaining overall stability. A weaker form of 
the separation principle is proven to hold whereby control could be designed independently but not 
estimation. However, actuation limitations still provide the possibility for a semi-independent design 
of estimators. Numerical simulations confirm that the stability depends very heavily on consensus on 
estimation and ultimately the amount of information available to the system as it evolves.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Formation flying satellites are becoming a major new develop-
ment in space operations. The commercial, scientific, and military 
sectors all wish to expand the mission capabilities of their satel-
lite fleets such as increased communication volume for information 
transfers, increased field of surveillance, and improved navigational 
accuracy for military and civilian aircraft [1]. While current dis-
tributed missions, such as GPS, are conducted in satellite constel-
lations, these constellations do not have a coupled control law that 
takes into account the states of other satellites. Therefore, forma-
tion flying would be able to perform missions with more stringent 
requirements on formation positions. With limited funds, imple-
menting formation flying into existing satellite technology is a 
cost-effective way to extract more utility. Formation flying capabil-
ities increases not only the scope of satellite missions but also the 
reliability. In addition to performing synchronous measurements, 
formations have redundancies in operation, which means failure of 
one spacecraft would not endanger the integrity of the mission [2].

A notable but novel use of formation flying can be seen in the 
distributed aperture telescope system [3]. In light of current re-
strictions on the cost and logistics of sending large telescopes for 
scientific observations, formation flying spacecraft could be used to 
circumvent this problem. Each of the satellites within the forma-
tion would act as a section of a larger reflecting telescope, and the 
formation, as a whole, would become a “virtual telescope” with 
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an aperture several times larger than their conventional reflect-
ing counterparts [4]. This would give astronomers access to better 
clarity and resolution compared to individual telescopes. Lastly, the 
robustness of architecture would avert a incident similar to the 
Hubble telescope, which had a manufacturing defect in its lens and 
had to be repaired in space. Smaller mirrors would be more cost-
efficient to manufacture, and satellites with defective instruments 
can be replaced and substituted fairly easily. This application is 
notable for its tight requirement on the shape of the formation in 
order to achieve satisfactory resolution. Thus, accurate estimation 
of the global formation structure is paramount to the success of 
such a mission.

Distributed space systems are seen to be the successor to cur-
rent monolithic systems that are too cumbersome to organize. 
Through the comprehensive survey on guidance and control tech-
niques for formation flying spacecraft by Scharf et al., one can 
see that a central-control framework lacks robustness to changes 
within the formations [5,6]. Distributed systems also allow for 
additional autonomy in conducting missions as they can reduce 
the reliance on receiving instructions from a ground station [2]. 
However, the fundamental challenge to the implementation of dis-
tributed systems is achieving a desired global outcome from iso-
lated, local interactions. Tillerson et al. [7] investigates the effec-
tiveness of an LP controller with regards to different methods of 
localizing a formation of satellites; however in order to implement
distributed control, the control input to each spacecraft would 
have to be published through a fully-connected network. From an 
estimation perspective, Olfati-Saber proposed using a distributed 
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Nomenclature

Note that units for all variables depends on designer’s choice of 
state and control variables
n number of agents
xi state of agent i
ui control input to agent i
Ã dynamics matrix of environment
Bi control matrix of agent i
vi process noise of agent i
X global state vector
U global control input
V global process noise
zi measurement vector of agent i
Hi measurement matrix of agent i
W i measurement noise of agent i
A global dynamics matrix

B global input matrix
H global measurement matrix
K state feedback gain
x̂i global state estimate from agent i
Ki Kalman gain of agent i
P i covariance of state error perceived by agent i
Ri covariance of measurement noise perceived by agent i
Q covariance of process noise
γ consensus coefficient
Ni neighborhood set of agent i
�i control selection matrix of agent i
Û i global control input perceived by agent i
ηi global estimate error of agent i
η concatenation of all estimate error

Kalman filter scheme that incorporates a consensus algorithm so 
that a group of observers can, collectively, estimate and agree on 
the states of a process [8]. Olfati-Saber and Jalalkamali furthered 
these results with moving observers who estimate a moving tar-
get [9]. Ranzer provided insight into using multiple controllers, 
accessing different measurements to control a distributed system 
and proved a separation principle for these cases [10]. Smith and 
Hadaegh sketched a formation controller that uses parallel estima-
tors, however the full formation states have to be observable by 
every estimator [11]. Building on all of this, Rahmani et al. pre-
sented a distributed estimation and control architecture in which 
each spacecraft would generate its own estimates of both the 
states and controls of the entire formation. These estimates are 
derived from both its sensors and the information transmitted by 
neighboring spacecraft [12]. Thus through local interactions, each 
spacecraft can build its own image of what the entire formation is 
doing and respond as required.

From a design perspective, one of the most powerful theorems 
from linear control has been the separation principle, which states 
that it is possible to combine independently designed controller 
and estimators together to form a stable system. For distributed 
systems, with each spacecraft performing local communication, the 
fundamental issue is: Is there a generalization for the separation prin-
ciple for distributed systems? If so, what form will it take? Unfortunately 
it will be shown that the separation principle strictly does not 
apply to these distributed systems. However, by relying on engi-
neering constraints and a weaker formulation of the separation 
principle, designers would still be able to design local estimators 
while ensuring stability.

2. Formulation

The problem considered is to determine how would the sep-
aration principle hold in the context of distributed systems. First, 
a framework is needed to consider the states of such a system. For 
this analysis, a spacecraft flying formation is considered, but the 
framework would be valid for any linear system. The dynamics of a 
distributed system can be formed by first considering the dynam-
ics of a single spacecraft and aggregating their respective states to 
form the state of the entire formation. Again, we will only con-
sider linear dynamics for each spacecraft. While at first glance this 
might look restrictive, in practice dynamics of most planned for-
mation flying missions can be represented by linearization around 
an operation point of interest, like the Clohessy–Wiltshire–Hills 
equations for relative orbital dynamics [13]. Since spacecraft for-
mation operate in relatively close proximity, the use of linearized 
dynamics is justified.

Fig. 1. Sketch of distributed estimation and control.

A sketch of the control scheme, along with its inter-dependen-
cies, is summarized in Fig. 1. The major concept is that each 
spacecraft is not only estimating its own states, but also the states, 
controls, and formation assignment of the other spacecraft. Using 
its estimate of the formation control and orientation, it would then 
implement its own control and select its own goal, respectively. 
Communication of information enables estimation of states even if 
no spacecraft can observe the entire formation. With this frame-
work in mind, the following sections will implement the structure 
with respect to the linear dynamics on the spacecraft formation.

2.1. Dynamics

Consider first, n spacecraft, each under linear dynamics influ-
enced by an exogenous, zero mean white Gaussian noise, vi .

ẋi = Aixi + Biui + vi (1)

The states of each spacecraft, xi , can be concatenated to form 
an aggregated state vector, X = [xT

1 · · · xT
n ]T . Similarly, the con-

trol input and noise disturbances can also be aggregated as U =
[uT

1 · · · uT
n ]T and V = [v T

1 · · · v T
n ]T respectively. Under this formu-

lation, the state and control matrix can be written in a block 
diagonal form: A = diag(A1, · · · , An) and B = diag(B1, · · · , Bn) re-
spectively. These aggregated dynamics can now be written in a 
form analogous to equation (1). Note that while the use of dif-
ferent individual state matrices Ai keeps this analysis general for 
diverse, heterogeneous systems, for homogeneous systems within 
the same environment, the state matrix would be identical.

Ẋ = A X + BU + V (2)

We assume, each spacecraft i can measure a subset of these ag-
gregated states zi , usually their own and a few select states of their 
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