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a b s t r a c t

We consider the dynamics of linear damped oscillators with stochastically perturbed natural frequencies.
When average dynamic response is considered, it is observed that stochastic perturbation in the natural
frequency manifests as an increase of the effective damping of the system. Assuming uniform dis-
tribution of the natural frequency, a closed-from expression of equivalent damping for the mean re-
sponse has been derived to explain the ‘increasing damping’ behaviour. In addition to this qualitative
analysis, a comprehensive quantitative analysis is proposed to calculate the statistics of frequency re-
sponse functions from the probability density functions of the natural frequencies. Firstly, single-degree-
of-freedom-systems are considered and closed-form analytical expressions for the mean and variance
are obtained using a hybrid Laplace's method. Several probability density functions, including gamma,
normal and lognormal distributions, are considered for the derivation of the analytical expressions. The
method is extended to calculate the mean and the variance of the frequency response function of
multiple-degrees-of-freedom dynamic systems. Proportional damping is assumed and the eigenvalues
are considered to be independent. Results are derived for several probability density functions and
damping factors. The accuracy of the approach for both single and multiple-degrees-of-freedom systems
is examined using the direct Monte Carlo simulation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Damped linear oscillators have been used to model a range of
physical problems across different length and time scales, and
disciplines including engineering, biology and nanotechnology.
Examples include nanoscale oscillators used as ultra sensitive
sensors [1], vibration of buildings and bridges under earthquake
loads, vibration of automobiles and aircrafts. The equation of
motion of a damped oscillator can be expressed as

mu t cu ku t f t 1τ¨( ) + ̇( ) + ( ) = ( ) ( )

where t, u(t), m, c, k are respectively the time, displacement, mass,
damping, stiffness and applied forcing. Diving by m, this equation
can be expressed as

u t u u t f t m2 / 2n n n
2ζ ω τ ω¨( ) + ̇( ) + ( ) = ( ) ( )

where k m/nω = is the natural frequency and c km/2nζ = is the
damping ratio. A rich body of literature on random vibration [2,3]
is available for the case when the forcing function is random in
nature. We are interested in understanding the motion when the
natural frequency of the system is perturbed in a stochastic

manner.
Uncertainty in the natural frequency can arise in uncertainties

in the stiffness or inertia properties of the structure. These can be
attributed to stochastic parametric variation in the Young's mod-
ulus, Poisson's ratio, density, or geometry of the system. In general,
stochastic finite element based methods (for example, [4–8]) are
well suited to deal with problems with random (distributed)
parameters. For a single degree of freedom (SDOF) system, the
dynamic response due to uncertainties in the natural frequency
can be easily obtained using Monte Carlo simulation. Such an
approach, however, may not shed light into the nature of the re-
sponse statistics to be discussed in the paper. The use of reduced
computational methods such as perturbation method or poly-
nomial chaos [9] works well in general except when response near
the resonance frequency is considered [10]. From an engineering
point of view, this is exactly where a reliable estimate of dynamic
response is necessary as this is crucial to safe design of dynamic
structures.

This paper gives an explanation as to why mean based analy-
tical approximations (e.g., perturbation, polynomial chaos) fail to
provide accurate statistical description of the dynamics response
near the resonance frequency of a damped system. In Section 2
some simulation results are provided as the motivation of this
study. Based on this, few key observations are made and an ex-
planation based on the mean response for the case of uniform
distribution of the natural frequency is provided in Section 3. A
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quantitative analytical approach for dynamic response statistics of
single-degree-of-freedom (SDOF) systems is presented in Section
4. The calculation of the probability density function (pdf) of the
response is outlined in Section 4.1 and the expressions for the
mean and standard deviation are derived in Section 4.2. These
expressions depend on the calculation of three integrals, which are
evaluated through Laplace's method and through a proposed
modified Laplace's method in Sections 4.2.1 and 4.2.2. Exact ex-
pressions of the mean and standard deviation are obtained for the
uniform distribution of eigenvalues in Section 5.1. Laplace's
method and modified Laplace's method are developed for normal,
gamma and lognormal distributions respectively in Sections 5.2,
5.3 and 5.4. The method is extended to obtain mean and standard
deviation of the response for multiple-degree-of-freedom (MDOF)
systems in Section 6. A numerical example for a MDOF system is
shown in Section 6.4, where the proposed methods are compared
to MCS. The main results and the key conclusions arising from this
study are discussed in Sections 7 and 8.

2. Dynamic response of damped stochastic oscillators

2.1. Uncertainty model

Suppose the natural frequency is expressed as xn n
2 2

0
ω ω= , where

n0
ω is the deterministic frequency and x is a random variable with
a given probability distribution function. We assume that the
mean of x is 1 and the standard deviation is s. Stochastic pertur-
bation of this kind can represent statistical scatter of measured
values or a lack of knowledge regarding the natural frequency. Of
course in the special case when the standard deviation of the
random variable is close to zero, the stochastic oscillator ap-
proaches the classical deterministic oscillator. For initial simula-
tion results, three different types of random variables, namely
uniform, normal and lognormal, are considered as shown in Fig. 1.

Note that normal random variable is not a good choice for a
positive quantity as the squared natural frequency. It is kept here
only for comparing the results later.

2.2. Dynamic response in the time and frequency domain

Dynamic response of a SDOF system with initial displacement
u0 and initial velocity v0 can be obtained [11] using

u t A e tsin 3t
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In Fig. 2 we show the deterministic and mean response of the
oscillator due to an initial displacement. The time axis is scaled
with the deterministic time period T 2 /n n0 0π ω= so that the results
become general. A representative damping factor of 5%, three
types of random variables and two values of standard deviations
are used for illustration. Deterministic response, sample responses
of the random system (with uniform distribution) and mean re-
sponse due to the three cases with random natural frequencies are
shown in the figure. The mean response is significantly ‘damped’
compared to the deterministic response. Additionally, the ‘damp-
ing effect’ is almost independent to the nature of the statistical
distribution of the natural frequencies.

The normalised steady-state response amplitude in the fre-
quency domain of an SDOF oscillator can be expressed as

u
u r r

1

1 2
.

5st n
2 2 2ζ

=
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Here the static deformation u F k/st = where F is the amplitude of
the harmonic excitation and the frequency ratio r / n0ω ω= . In Fig. 3,
the dynamic response of the deterministic system and the mean
responses due to three cases with random natural frequencies are
shown. The frequency axis is scaled with the deterministic fre-
quency ωn0 for generality. Like the time-domain response, we
observe that the mean response is significantly more damped
compared to the deterministic response. Although the mean re-
sponses for different pdfs of ωn

2 are slightly different, the pre-
dominant feature (i.e., the ‘damping effect’) is mainly depended on
the standard deviation of the random variable. The observations in
these results can be summarised as:

� The mean response of a SDOF oscillator with random natural
frequency is more damped compared to the underlying de-
terministic response.

� The higher the randomness (standard deviation), the higher the
‘effective damping’.
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Fig. 1. Assumed probability density functions of the squared natural frequency xn n
2

0
2ω ω= . We consider that the mean of x is 1 and the standard deviation is sa. (a) Pdf:

0.1aσ = . (b) Pdf: 0.2aσ = .
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