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a b s t r a c t

A novel approach for the systematic construction of wind-generated, high probability, wave groups, is
presented. The derived waveforms originate from a Markov chain model allowing for the incorporation
of cross-correlations between successive wave heights and periods. Analytical expressions of the tran-
sition probability distributions are provided in terms of copulas. Rank correlations are estimated from an
envelope-process-based approach. The Karhunen–Loève theorem is employed in order to construct the
continuous analogs of discrete height and period successions. The method seems to predict well the
expected wave heights. The period predictions are conservative, yet they follow the trends of simulated
wave trains. Comparisons with predictions of the “Quasi-Determinism” theory for very high runs indicate
good coincidence. The derived wave groups are intended to be used for the assessment of ship stability in
irregular seas.

Published by Elsevier Ltd.

1. Introduction

1.1. Motivation and objective

It is well-known that the study of ship instability in a stochastic
sea can easily turn into a very computationally expensive exercise.
More so, if high fidelity hydrodynamic codes are employed for per-
forming long-time simulations of ship motions and most of the time
is idly expended for simulating innocuous ship-wave encounters. The
efficiency of brute force computational procedures targeting the rare
manifestations of ship instability is, in general, very low. Thus, a
method for directly extracting those specific time intervals when
dangerous wave events are realized, is highly desirable.

In this paper we present a novel approach for the systematic
construction of realistic wave group profiles, characterized by a high
probability of occurrence, given the sea state. The objective is the
development of an efficient method for studying ship instability
phenomena incurred by wave groupiness. We build further upon the
so called “critical wave groups” approach, briefly reviewed next.

1.2. The “critical wave groups” concept

According to the original formulation of the “critical wave
groups” approach, the probability of occurrence of a certain type of
ship instability can be determined by the probability of en-
countering wave groups generating the instability; i.e. producing
on the ship critical, or severer, excitations [1]. The principal idea is
to disassemble the problem into a deterministic and a probabilistic
part. In the context of the former, critical values for the key wave
group characteristics (e.g., height, period and run length) are
identified, from deterministic consideration of ship dynamics. The
critical waveforms represent basically thresholds, defined by reg-
ular wave trains. In the probabilistic part, on the other hand, the
propensity for stability failure is expressed as the probability of
encountering any wave group above the determined threshold
height, for a range of periods and wave group run lengths. How-
ever, defining thresholds by regular wave trains might lead to
conservative conclusions.

Various other works have targeted the outcome of encounters
between wave groups and ships. For example, recently, Malara
et al. [2] predicted the maximum ship roll motions, in the vicinity
of very high waves, by the theory of "Quasi-Determinism" [3],
using the normalized autocovariance function of the wave load
process.
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1.3. Advances in wave group theory

Numerous studies have been focused on the stochastic treat-
ment of height and period successions within wave sequences.
Markov chain modeling of consecutive waves has been one of the
most successful approaches. The original formulation was pre-
sented by Kimura [4], who validated the model by numerical si-
mulations. In accordance with the study of Arhan and Ezraty [5]
for positive correlation between successive wave heights, Kimura
[4] elaborated wave groupiness measures for sequences of discrete
heights and periods that fulfill the Markov property. In his study,
however, the features of wave period trains were completely in-
dependent from the related height groupings. Moreover, the cor-
relation parameters involved in the proposed distribution laws
were estimated from the simulated time-series.

Kimura’s study has found keen supporters (e.g., Battjes and van
Vledder [6], Sobey [7], Stansell, et al. [8]). Battjes and van Vledder
[6] proposed a formula for the estimation of the correlation
parameter for successive wave heights, based on Rice’s theory for
envelope statistics [9,10]. Van Vledder [11] proposed later an im-
proved calculation of this parameter which was found to provide
satisfactory predictions for wave group statistics in the case of
sufficiently narrow-banded spectral density forms [8]. Despite the
remarkable progress that has been achieved for the “wave height
Markov chain”, little attention has been paid, hitherto, on the
corresponding wave periods. This could be attributed to the
computational complications arising when a wave-envelope-
based approach is used.

1.4. Key points of the current approach

Instead of elaborating on wave group statistics, the current
study is focused on the construction of continuous-time wave
groups whose heights and periods originate from a discrete-time
Markov process. The governing equations for a Markov chain
process related to the time evolution of joint wave characteristics
are thus formulated. To this end, Kimura's model [4] needs to be
extended, so as to incorporate cross-correlations between suc-
cessive heights and periods. Moreover, continuous-time re-
presentations of this process are constructed, using the “Karhu-
nen–Loève” theorem [12,13]. Analytic formulas for the density
kernels, involved in the transition mechanisms of the Markovian
system, are proposed in terms of copula probability distributions.
The method is tested against Monte Carlo simulations. Compar-
isons with the established theory of “Quasi-Determinism” [3] are
performed for cases of very high wave groups.

2. Stochastic modeling of ocean wave groups

A wave group is a sequence of waves with heights exceeding a
certain preset level, Hcr, and periods varying within a potentially
small range [14,15]. Individual waves are defined using the stan-
dard zero up-crossing method. Their height, H , is given by the
maximum vertical excursion of the surface elevation between two
consecutive zero up-crossings and their period, T , is defined as the
time interval separating these two events. The group length j is
the number of consecutive waves with heights greater than Hcr .

2.1. The Markov chain approach

Let us define the random vector process = { }Z H T, which sa-
tisfies the Markov property. H is the wave height and T the asso-
ciated period. ζ Ω∈i is the state variable of Z at time step i, where
Ω is the event space of that process. The joint probability dis-
tribution of N consecutive realizations of Z is based on the

following product form:
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For a time-homogeneous chain, the transition mechanism is
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given as:
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The expected values of the coordinates of Z are given by:
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Closed forms for the probability density functions involved in
Eqs. (3) and (4), are presented in Section 3.

For a given set of initial conditions, the “most expected” se-
quence of wave heights and related periods can be produced using
Eqs. (3) and (4) iteratively. Forward application of the iterative
scheme determines the expected features of the “future” waves.
For a Markov process, the time-reversibility property allows for
the application of Eqs. (3) and (4) backwards in time so as to
compute the expected features of the “past” waves. For practical
reasons the selection of the initial conditions will be based on the
features of the highest wave of the sequence. In this way, the latter
is uniquely defined by the height and period of the highest wave,
which occupies the center of the group.

2.2. The Karhunen–Loève representation

In order to construct the continuous-time profile of the pro-
posed Markovian system, let us assume that the water surface
elevation η ( )t is a stochastic signal defined over a fixed time in-
terval [ − ]T T, . The Karhunen–Loève theorem [12,13] states that
η ( )t accepts the following expansion:

∑η ( ) = ( ) − < <
( )=

∞

t a f t T t T, .
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n n
0

In the case of a Gaussian random process, the coefficients, an

( =n 0, 1, ...), are random independent variables. The computa-
tion of basis functions fn casts in the form of a Fredholm equation
of the second kind, with the kernel being the autocorrelation
function R of the process:

∫ τ τ κ( − ) ( ) = ( ) ( )−
R t f t d f t . 6T

T

n n n

The κn parameters are the eigenvalues of the respective or-
thogonal functions fn. According to Slepian and Pollack [16], there
exists an explicit solution for Eq. (6) when the kernel of the in-
tegral is the sinc function. Sclavounos [17] employed the simila-
rities between the latter and the typical autocorrelation form for
wind generated waves, in order to compute the fn functions. The
same computational procedure is followed here (the details of the
analysis are omitted for brevity).

The adjustment of the random variables an will be based on the
predictions of Eqs. (3) and (4), for heights and periods, respec-
tively. The key idea is to apply geometric constraints on Eq. (5) at
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