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a b s t r a c t

In this paper the problem of the response evaluation in terms of probability density function of nonlinear
systems under parametric Poisson white noise is addressed. Specifically, extension of the Path Integral
method to this kind of systems is introduced. Such systems exhibit a jump at each impulse occurrence,
whose value is obtained in closed form considering two general classes of nonlinear multiplicative
functions. Relying on the obtained closed form relation liking the impulses amplitude distribution and
the corresponding jump response of the system, the Path Integral method is extended to deal with
systems driven by parametric Poissonian white noise. Several numerical applications are performed to
show the accuracy of the results and comparison with pertinent Monte Carlo simulation data assesses
the reliability of the proposed procedure.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Gaussian white noise processes are probably the most com-
monly adopted in random vibration analysis, and numerous pa-
pers have been then devoted to the study of linear and nonlinear
systems under this kind of excitation. On the other hand, a dif-
ferent and yet very versatile model for random excitations is re-
presented by the so-called Poisson white noise process W tP ( ).
Samples of this stochastic process are constituted by a train of
impulses of random amplitude Y occurring at random time in-
stants distributed according to a Poisson law. The versatility of this
model is simply proved considering that if the mean number of
impulse occurrences per unit time λ → ∞ and E Y2λ [ ] is constant
(being E [⋅] the ensemble average operator), then W tP ( ) reverts to a
Gaussian white noise process. Further there exist a variety of
phenomena of engineering interest which are basically non-nor-
mal and may be more appropriately modeled as Poisson white
noise processes. Examples are highway bridges under traffic loads
[1,2], buffeting airplanes tails [3,4], vehicles or tracks traveling on
rough roads [5,6] and earthquake excited structures [7–9].

The equation ruling the evolution of the probability density
function (PDF) of dynamical systems under external Poisson white

noise processes is the so-called Kolmogorv-Feller (KF) equation,
which is an integro-differential equation with a convolution in-
tegral whose kernel is the probability of the spikes occurrences.
Exact solutions for this kind of equation exist only for the sta-
tionary case of a very restricted class of systems and distribution of
the impulse amplitude [10,11]. Numerical or approximate analy-
tical procedures have been then developed to determine the
evolution of the response PDF for more generic cases. Readers are
referred to [12–20] and references therein for a detailed treatment
of the problem.

Note that all these studies have dealt with systems under ex-
ternal excitations, in which the exciting forces are independent on
the configuration of the systems themselves. Nevertheless, in
many cases of engineering interest the exiting forces are modu-
lated by a function of the system response, and these are usually
known as parametric or multiplicative.

A comprehensive analysis on dynamical systems under random
parametric excitation can be found in [21]. In this regard, it should
be noted that the majority of papers pertaining this topic deal with
systems under multiplicative Gaussian white noise excitation,
while the relevant analysis on systems subjected to parametric
Poisson white noise is much less addressed. On the other hand
there are many mechanical systems in which parametric impulsive
inputs arise, such as when dealing with impacts between objects
and objects with a rigid barrier [22–24] or rocking motion of rigid
blocks under base excitation [25–27]. Thus there is still a need of
further studies on the response evaluation of systems under
parametric Poisson white noise.
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In the case of systems driven by parametric Poissonian white
noise, a hierarchy of corrective terms or an infinite number of
higher order derivate moments appears in the corresponding
modified KF equation [28–32]. Exact solution for the stationary
PDF of such cases can only be found in [11] for a very restricted
class of nonlinear systems, while in [33] a perturbation procedure
is considered to find the approximate stationary PDF. In [34,35]
equivalent linearization and stochastic averaging techniques are
adopted for multiplicative Poisson excitation, while in [36] the
cumulant-neglect closure scheme has been extended to deal with
these systems. In [37] a modified Monte Carlo simulation based
procedure is proposed for parametrically excited systems and in
[38,39] the extension of the exponential-polynomial closure
method is derived to cope with Poisson white noise parametric
input. Finally recently in [40] a complex fractional moments based
procedure, previously developed in [20], has been applied to res-
titute the evolution of the response PDF of a class of nonlinear
systems parametrically excited by Poisson white noise.

In this paper the Path Integral (PI) method, commonly used to
determine the PDF evolution of oscillators under (external)
Gaussian or Poissonian white noise [12,16–18], is extended to the
case of nonlinear systems under parametric Poisson white noise
excitation. This procedure is based on recent results reported in
[41], for (deterministic) multiplicative impulsive input. In this re-
gard, note that here a wide class of symmetric and antisymmetric
nonlinear functions of the response process are considered to
modulate the random force. Thus the response of quasi-linear
system can be easily obtained as a limiting case of the corre-
sponding antisymmetric function.

In order to assess the validity of the proposed procedure, ap-
plications to several nonlinear systems under parametric Poisson
white noise are presented, and the resulting evolution of the PDF
is compared with pertinent Monte Carlo simulations as well as
with some benchmark solutions.

2. Jumps for parametric deterministic impulse

In this section a brief overview on some recent results related
to the solution of nonlinear systems under deterministic para-
metric impulsive input is presented. These results will constitute
the base for the following extension to systems under parametric
Poisson white noise.

Consider a generic dynamical system driven by a parametric
impulse, whose equation of motion is given in the form
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where f x t,( ) and g x t,( ) are nonlinear functions of the response
x t( ), kγ is the amplitude of the Dirac's delta t tkδ ( − ) at the time
instant tk and x0 is the assigned initial condition. Note that if
g x t, 1( ) = the impulse is external, otherwise the impulse is para-
metric. For this reason hereinafter g x t,( ) will be denoted as
parametric (or multiplicative) function, to recall it modulates the
impulsive input.

Solution of Eq. (1.a) may be obtained subdividing the time axis
in three parts, that is: t tk< −, tk tk,[ ]− + and t tk> +, where tk

− and tk
+

indicate the time instants immediately before and after the im-
pulse respectively.

Specifically, these steps should be followed:

i. Solve the homogenous differential equation
x t f x t t t, , k̇ ( ) = ( ) ∀ < −, with initial condition x0, and find the
solution immediately before the impulse occurrence x tk( )− ;

ii. Evaluate the jump J tk( ) due to the Dirac's delta, so that the

response immediately after the impulse is given as
x t x t J tk k k( ) = ( ) + ( )+ − ;

iii. Solve the differential equation x t f x t t t, , k
̇ ( ) = ( ) ∀ > + assuming

as initial condition the value x tk( )+ .

While solution for t tk< − and t tk> + can be easily accomplished,
particular attention should be paid to find the jump J tk( ) for a
generic nonlinear parametric function g x t,( ), unless the case
g x t, 1( ) = is considered (external impulse) for which J tk kγ( ) = .

In some previous papers [42] the jump for the case of para-
metric impulse and g x t C,( ) ∈ ∞ (the class of ∞-times differenti-
able functions) has been given in a series expansion
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where g x t,j ( )( ) may be evaluated in recursive form as follows
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Although Eq. (2) returns the jump for a very wide class of
nonlinear parametric function g x t,( ), its series form is not easily
manageable. On the other hand, it has been demonstrated in [41]
that the jump prediction can be restituted in analytical form, once
the attention is confined to some quite general form of antisym-
metric and symmetric nonlinearities.

Specifically functions g x t,( ) of the form

g x t x x, sgn ; 4.aα( ) = ( ) ∈ ( )α +

g x t x, ; 4.bα( ) = ∈ ( )α +

have been considered, since they represent a wide class of non-
linearities of engineering interest. In fact solving Eq. (1.a) with
g x t,( ) represented in Eq. (4.a), solution for the linear case 1α( = )
as well as for nonlinearity of the type sgn(⋅) 0α( = ), cubic 3α( = )
and so on x x xsgn ; 0, 1, 3,2 1 2 1 α( ( ) = = …)α α+ + may be found.
Further solving Eq. (1.a) with g x t,( ) expressed in Eq. (4.b), the case
of external input 0α( = ) is solved, and for 2, 4,α( = …) the cases of
the type x x2 2=α α.

2.1. Antisymmetric nonlinearities

Consider the case of nonlinear parametric function in Eq. (4.a).
In order to find x tk( )+ once x tk( )− is already known, let assume that
the Dirac's delta is a window function with finite duration τ and
with an amplitude /kγ τ , so that the total area of the impulse is
preserved (see Fig. 1). Hence the correct value of x tk( )+ is obtained
as the limit when 0τ → .

Let z ρ( ) be the solution of the following differential equation

Fig. 1. Response to the window function of duration τ and amplitude Y /k τ .
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