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a b s t r a c t

This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within
model-based reliability estimation of engineering systems for individual limit states. Epistemic un-
certainty is considered due to both data and model sources. Sparse point and/or interval data regarding
the input random variables leads to uncertainty regarding their distribution types, distribution para-
meters, and correlations; this statistical uncertainty is included in the reliability analysis through a
combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model aver-
aging techniques. Model errors, which include numerical solution errors and model form errors, are
quantified through Gaussian process models and included in the reliability analysis. The probability
integral transform is used to develop an auxiliary variable approach that facilitates a single-level re-
presentation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop
implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation
under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the
proposed methodology.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability analysis is concerned with the assessment of system
performance in the presence of uncertainty, which has generally
been classified into two types: aleatory (natural variability) and
epistemic (lack of knowledge). The reliability estimate is affected
by both types of uncertainty; however, extensive previous litera-
ture in model-based reliability analysis has predominantly con-
sidered the former type and not the latter. While several alter-
native frameworks have been explored to represent uncertainty,
this paper considers the probabilistic framework. In this context,
the probability of failure is represented as

∫
( )

= ( )
( )≤

x xP f d
1X

Xf
g 0

where Pf is the probability of failure, X is the vector of input
random variables, ( )xfX is the joint probability distribution func-
tion (PDF) of X , ( )Xg is the performance (limit state) function, and

( )≤Xg 0 represents the failure domain. Different types of Monte
Carlo simulation methods, as well as analytical integration tech-
niques such as first-order and second‐order reliability methods
(FORM, SORM), have been developed [1] to evaluate Eq. (1).

The evaluation of the multi-dimensional integral in Eq. (1) can

be difficult; therefore, First Order Reliability Methods (FORM) ap-
proximate the limit state function, which could be non-linear, with
a first-order (linear) approximation while the Second Order Re-
liability Methods (SORM) estimate the failure probability by em-
ploying a second-order approximation to the limit state. Refer to
[1] for more details.

Due to insufficient information, uncertainty may arise about
the exact values of deterministic variables or the distribution
characteristics of random variables in Eq. (1). This is referred to as
statistical uncertainty. Several theories, both probabilistic [2–4]
and non-probabilistic [5], have been used to represent this type of
epistemic uncertainty. Some of the approaches include interval
analysis [5], convex models [6], fuzzy sets and possibility theory
[7], evidence theory [8], Bayesian probability theory [3] and im-
precise probabilities [9].

This paper uses a Bayesian probabilistic approach to model
epistemic uncertainty about the input random variables. A random
variable may be represented using a parametric (e.g., normal) or a
non-parametric distribution. A parametric distribution is asso-
ciated with a distribution type and distribution parameters. If the
distribution type of an input variable X is known but the dis-
tribution parameters are uncertain, then X can be represented by a
distributional p-box. If the distribution type is also uncertain, then
X may be represented by a free p-box [10].

Further, it may be difficult to obtain joint data on all the vari-
ables in the system due to limited resources. In such cases, the
correlations between variables are also uncertain. In some cases,
qualitative information that some variables are positively or
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negatively correlated might be available. It is desirable to include
such information in reliability estimation; however, methods to
include correlation uncertainty in reliability estimation are not yet
fully explored.

A simple implementation of reliability analysis in the presence
of only distribution parameter uncertainty may be through a
nested double-loop MCS or a nested MCS-FORM/SORM approach
where the distribution parameters are sampled in the outer loop,
and for each realization of the parameters, failure probability is
calculated in the inner loop using MCS or FORM/SORM. The result
of double-loop analysis may be described through an average of all
estimates of failure probability or by representing the failure
probability itself as a distribution [11]. The hierarchical formula-
tion of uncertainty sources according to the Rosenblatt transfor-
mation [12] offers a more convenient approach compared to
double-loop sampling. Recently, Sankararaman and Mahadevan
[13] proposed a new method of single-loop sampling using the
concept of an auxiliary variable, based on the probability integral
transform [1], in which samples of a variable are obtained through
simultaneous sampling of parameters and CDF values. This ap-
proach is used in this paper for faster computation.

The statistical uncertainty discussed above constitutes one ca-
tegory of epistemic uncertainty; another category is model un-
certainty [14]. Models are built to explain the real world phe-
nomena and frequently involve assumptions, simplifications and
generalizations. Models may be based on first principles (physics-
based) or derived from data (data-driven). Model uncertainty re-
presents the inability of these models to accurately represent the
true physical behavior of the system. Uncertainty due to a model
may be due to three sources: (1) model parameters, due to limited
data; (2) numerical solution errors that arise from the methodol-
ogy adopted in solving the model equations; and (3) model form
errors, which arise due to assumptions and simplifications made
in the development of models. Model calibration is used to esti-
mate the model parameters using input-output data. Model ver-
ification can be used to quantify numerical solution errors (e.g.,
finite element discretization error, surrogate model error, round-
off error, etc.). Model form errors can be estimated by comparing
the model predictions against physical observations (e.g., model
validation tests). Whenever physical observations are used for ei-
ther model calibration or model validation, measurement un-
certainties also arise, and these contribute to the uncertainty in
the model prediction. Discretization error arises when the solution
of the continuum domain is computed using numerical techniques
(e.g., finite element methods) which involve discretization of the
continuum domain. Surrogate models are often used in un-
certainty quantification, reliability analysis and design optimiza-
tion when high fidelity physics models are computationally ex-
pensive. The estimation of surrogate model error involves com-
paring the output of the original model with the surrogate model.

The next stage after quantification of different types of epis-
temic uncertainty is their inclusion in a framework for reliability
estimation. This paper proposes a probabilistic framework to in-
clude both forms of epistemic uncertainty and aleatory un-
certainty in reliability analysis. The main issue is that reliability
analysis techniques such as MCS, FORM, etc. are wrapped around
deterministic physics models, i.e., for a fixed input value, the
model output is deterministic. In the presence of model un-
certainty, the model output is not deterministic even for a fixed
input. When variability and input statistical uncertainty are added,
the model output is in the form of multiple probability distribu-
tions. Further, the various uncertainty sources and errors do not
combine in a simple manner; they occur at different stages of the
analysis, and their combination could be nonlinear, nested or
iterative. Reliability analysis in the presence of multiple sources
and types of uncertainty is thus not straightforward; this

paper seeks to overcome this challenge. Current FORM-based re-
liability analysis methods have included either parameter un-
certainty [15] or model errors [16] but distribution type un-
certainty, uncertain correlations or combination of several un-
certainty sources have not been considered. Similarly, Monte
Carlo-based methods have not considered the various epistemic
uncertainty sources in reliability analysis.

The overall contribution of the paper is a comprehensive and
systematic framework for quantifying and aggregating the con-
tributions of different types of epistemic uncertainty (statistical
and model uncertainties) in a manner suitable for reliability ana-
lysis using FORM and Monte Carlo sampling. The key contributions
of this paper can be summarized as follows – (1) quantification of
different types of statistical uncertainty (distribution parameter
and distribution type uncertainty, and uncertainty about correla-
tions) and model uncertainty (model form and numerical solution
errors) within a probabilistic framework; (2) development of a
novel FORM-based approach to include different types of epis-
temic uncertainty (data, model) along with aleatory uncertainty
within reliability analysis by utilizing the concepts of auxiliary
variable and theorem of total probability; and (3) development of
a single-loop Monte Carlo sampling approach for the inclusion of
both aleatory and epistemic uncertainty in reliability estimation.

The rest of the paper is organized as follows. In Section 2,
procedures to quantify various types of epistemic uncertainty are
presented. Section 3 develops the proposed methodologies (using
FORM and Monte Carlo sampling) for reliability estimation in the
presence of aleatory and epistemic uncertainty. In Section 4, a
structural reliability example and a fluid–structure interaction
problem (airplane wing) are used to demonstrate the application
of the proposed methods. Concluding remarks are provided in
Section 5.

2. Representation of epistemic uncertainty

In this section, procedures for the representation of epistemic
uncertainty due to data and model sources are discussed in order
to facilitate reliability analysis through MCS and FORM techniques.

2.1. Distribution parameter uncertainty

In the presence of sparse point data on X , two approaches may
be used to construct the probability distributions of distribution
parameters Θ (using a Bayesian perspective). The first approach is
to use resampling methods such as Jack-knife and Bootstrap [17] to
generate multiple values of Θ that are used to construct their
distributions; the second approach is to use a likelihood-based
representation of the available data to construct distributions of Θ
using Bayes’ theorem [18]. The likelihood-based approach can be
extended to accommodate interval data and to construct para-
metric as well as non-parametric distributions [19]; this approach
is adopted in this paper.

Let a dataset D for a variable Xconsist of n point data
( )=p i to n1i and m interval data [ ]( = )a b j to m, 1j j . The likelihood

function for the distribution parameters Θ can be constructed as

( )( ) ∏ ∏θ θ θ θ= ( = | ) = − ( = | )
( )= =

⎡⎣ ⎤⎦L f x p F x b F x a
2i

n

X i
j

m

X j X j
1 1

where ( )f xX and ( )F xX represent the PDF and CDF of variable X
respectively. After constructing the likelihood function, the dis-
tributions of the distribution parameters are obtained using Bayes’
theorem as
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