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a b s t r a c t

Discrete Bayesian networks (BNs) can be effective for risk- and reliability assessments, in which prob-
ability estimates of (rare) failure events are frequently updated with new information. To solve such
reliability problems accurately in BNs, the discretization of continuous random variables must be per-
formed carefully. To this end, we develop an efficient discretization scheme, which is based on finding an
optimal discretization for the linear approximation of the reliability problem obtained from the First-
Order Reliability Method (FORM). Because the probability estimate should be accurate under all possible
future information scenarios, the discretization scheme is optimized with respected to the expected
posterior error. To simplify application of the method, we establish parametric formulations for efficient
discretization of random variables in BNs for reliability problems based on numerical investigations. The
procedure is implemented into a software prototype. Finally, it is applied to a verification example and an
application example, the prediction of runway overrun of a landing aircraft.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For operational risk and reliability management, it is often
desirable to compute the probability of a rare event F under
potentially evolving information. Examples include warning sys-
tems for natural and technical hazards, or the planning of inspec-
tion and intervention actions in infrastructure systems. Ideally, this
is achieved through Bayesian updating of PrðFÞ with the new
information Z to the posterior probability PrðFjZÞ. When physically-
based or empirical models for predicting the rare event exist, such
updating is possible with structural reliability methods (SRM)
[24,26,31]. However, it is often difficult to perform the required
computations in near-real-time, due to a lack of efficiency or
robustness. A modeling and computational framework that does
facilitate efficient Bayesian updating is the discrete Bayesian net-
work (BN). Hence it was proposed to combine SRMs with discrete
Bayesian networks for near-real-time computations [29,30,7].

BNs are based on directed acyclic graphs (DAGs), to efficiently
define a joint probability distribution p Yð Þ over a random vector Y
[13,14]. The DAG of a BN, which is often referred to as the quali-
tative part of a BN, consists of a node for each variable in Y and a
set of directed links among nodes representing dependence

among the variables. In the case of discrete BNs, conditional
probability tables (CPTs) quantitatively define the type and
strength of the dependence among the variables. The entries of
the CPT of a variable Yi are the probabilities for each state of Yi

conditional on all possible combinations of states of its parents.
For hybrid BNs, which include both discrete and continuous

variables, exact inference is available only for two special cases,
which are BNs with Gaussian nodes, whose means are linear
functions of their parents, and BNs, whose nodes are defined as a
mixture of truncated basic functions (MoTBFs) [17,18]. Otherwise,
approximate inference algorithms are available for hybrid BNs
based on sampling techniques (e.g. [20,9]). However, these are
computationally demanding and not generally suitable for near-
real-time decision support [8]. As an alternative, the continuous
random variables can be discretized, which enables the use of
exact inference algorithms that exist for general discrete BNs.
These include the variable elimination algorithm [32] and the
junction tree algorithm [12,19].

The size of discrete BNs, and the associated computational
effort, increases approximately exponentially with the number of
discrete states of its nodes, which motivates the development of
efficient discretization algorithms. While efficient discretization in
the context of machine learning and BNs in general has been
investigated by multiple researchers [15,5], research on efficient
discretization in the context of engineering risk analysis or struc-
tural reliability has been limited. In general, it is to be dis-
tinguished between static and dynamic discretization. While the
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former discretizes the BN a-priori before entering evidence (off-
line), the latter is based on an iterative scheme that updates the
discretization scheme in function of the evidence (online).

Dynamic discretization for risk analysis applications has been
developed mainly by Neil et al. [21], based on the work by Kozlov
and Koller [16]. The procedure starts with an initial discretization
of a hybrid BN, for which an approximate entropy error is calcu-
lated. If the error complies with a convergence criterion, the cur-
rent discretization is accepted. Otherwise the discretization is
iteratively altered, by splitting the intervals with the highest
entropy error, until the convergence criterion is fulfilled. The
approach is implemented in the software AgenaRisk [1]. Other
dynamic discretization algorithms for reliability analysis have
been proposed, e.g. in [33] for dynamic BNs. The advantage of
dynamic discretization is its flexibility when evidence is entered in
the BN, i.e. when the model is updated with new observation.

Static discretization has the advantage of being computa-
tionally faster and simple to implement. Some considerations for
static discretization of BNs in reliability applications have been
presented in [25,29,7]. As pointed out by Friis-Hansen [7], for
applications in which extreme events are important, discretiza-
tion of the distribution tails should be performed with care.
Static discretization facilitates a careful representation of these
tails. However, the accuracy of the static discretization varies
with the available evidence. The difficulty is thus to find a dis-
cretization scheme that is optimal under a wide variety of pos-
terior distributions.

In this paper we derive a procedure for efficiently performing
static discretization of continuous reliability problems. An optimal
discretization scheme is sought, which minimizes the expected
approximation error with respect to possible future observations
(evidence). To solve this optimization problem, we propose to
approximate the reliability problem by the First-Order Reliability
Method (FORM). Section 2 of the paper describes the proposed
methodology. Section 3 presents numerical parameter studies, and
simple parametric relations for defining an efficient discretization
scheme are derived. In Section 4, the procedure is applied to a set
of verification examples and to the computation of the probability
of runway overrun of a landing aircraft. While the theory is
introduced for problems with only one design point, considera-
tions regarding problems with multiple design points are given in
the last verification example and in the discussion.

2. Methodology

2.1. Structural reliability

Since the 1970s structural reliability methods have been devel-
oped and applied in the engineering community to estimate failure
probabilities Pr Fð Þ of components or systems, based on physical or
empirical models. The performance of engineering components is
described by a limit state function (LSF) g xð Þ, where X¼ ½X1;…;Xn�
is a vector of basic random variables influencing the performance of
the component. By definition, failure corresponds to g xð Þ taking
non-positive values, i.e. the failure event is F ¼ g Xð Þr0

� �
. g xð Þ

includes the physical or engineering model, which is often com-
putationally demanding. The probability of failure is calculated by
integrating the probability density function (PDF) of X, f X xð Þ, over
the failure domain:

Pr Fð Þ ¼
Z
g xð Þr0

f X xð Þdx ð1Þ

The formulation can be extended to the reliability of general
systems by defining the failure domain as a combination of series
and parallel systems [4]. In the general case, there is no analytical
solution to Eq. (1) and the integral is potentially high-dimensional.
For this reason, structural reliability methods (SRMs) are applied
to approximate it. These include the first- and the second order
reliability method (FORM and SORM) as well as a large variety of
sampling methods, including importance sampling methods such
as directional importance sampling, and sequential sampling
methods such as subset simulation. These methods are well-
documented in the literature [2,22,3,4].

2.2. First order reliability method (FORM)

To obtain an approximation of the probability of failure through
FORM, the LSF g Xð Þ is transformed to an equivalent LSF GðUÞ in the
space of uncorrelated standard normal random variables U¼ ½U1;
…;Un� (Fig. 1). The transformation is probability conserving, so that
Pr g Xð Þr0½ � ¼ Pr G Uð Þr0½ � ¼ PrðFÞ. A suitable transformation for
this purpose, which is consistent with the BN, is the Rosenblatt
transformation [10]. In case all basic random variables are inde-
pendent, this transformation reduces to the marginal transfor-
mations: Ui ¼Φ�1 FXi

Xið Þ� �
, with Φ�1 being the inverse standard

normal CDF.

Fig. 1. Design point and linear approximation of the limit state surface. Left side: original random variable space; right side: standard normal space (from [27].
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