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A B S T R A C T

This paper deals with the numerical simulation of low-Reynolds-number flow around a freely vibrating circular
cylinder in two-degrees-of-freedom. The governing equations are written in a non-inertial system fixed to the
moving cylinder and solved using finite difference method. The natural frequency of the cylinder is chosen to be
constant, agreeing with the vortex-shedding frequency for a stationary cylinder at Reynolds number Re0. Sys-
tematic computations are carried out for Re0¼ 80, 100, 140 and 180 keeping the mass ratio and structural
damping coefficient at m*¼ 10 and ζ ¼ 0. The effect of Re0 on the root-mean-square (rms) values of cylinder
displacements and drag coefficients is analyzed. Plotting the data set belonging to different Re0 values against
U*St0 makes comparison easier. Local extreme values are found in the rms of streamwise displacement and drag
coefficient in the range U*St0¼ 0.4–0.65. In the vicinity of U*St0¼ 0.5 the rms of drag approaches zero and the
phase angle between the x component of the motion and drag changes abruptly from 0� to 180�. The pressure
drag coefficient seems to be responsible for the sudden change. The cylinder follows a distorted figure-eight path
in most cases investigated and its orientation changes from clockwise to counterclockwise orbit at around
U*St0¼ 0.5.

1. Introduction

Flow around a circular cylinder is extensively studied due to its
practical importance, using both experimental and numerical ap-
proaches. The flows are usually classified using Reynolds number based
on free stream velocity U∞, cylinder diameter d and fluid viscosity ν. For
stationary cylinders the flow is steady below Reffi 47 and twin vortices
are attached to the body. At around Re¼ 47 Hopf bifurcation occurs,
resulting in an unsteady flow of periodic vortex shedding (Thompson and
Le Gal, 2004). Risers, pipes, and underwater structures are good exam-
ples of this phenomenon. Periodic vortex shedding from the body can
induce high amplitude oscillations, which can cause serious damage to
the structure; this phenomenon played an important role in the collapse
of Tacoma Narrows Bridge in 1940. Damage to thermometer cases at the
Monju fast-breeder nuclear power plant in 1995 leading to a major
shutdown of the entire facility was also due to periodic vortex shedding
(Nishihara et al., 2005). On the other hand, mechanical energy trans-
ferred between the fluid and the moving body can also be beneficial.
Possibilities of energy harvesting have been studied e.g. by Bernitsas
et al. (2008, 2009) and Mehmood et al. (2013).

Barkley and Henderson (1996), applying linear stability analysis,

showed that the flow around a stationary cylinder is two-dimensional
(2D) up to Reffi 189. Three-dimensional (3D) instability occurs at
Reffi 189 (Mode-A) and at Reffi 259 (Mode B). Thus, the application of a
2D computational code above Re¼ 189 is not justified for a stationary
cylinder. For vibrating cylinders, however, experiments by Bearman and
Obasaju (1982) and Koide et al. (2002) and numerical simulations by
Poncet (2002) showed that synchronization (or lock-in) between vortex
shedding and cylinder motion increases the two-dimensionality of the
flow compared to the case of a stationary cylinder. The upper limit of the
two-dimensionality has not been determined due to the large number of
influencing parameters.

For the prediction of aerodynamic forces acting on a freely vibrating
cylinder researchers often use a forced or controlled oscillation model.
This approach is a simplifying model and is often chosen because no
equations need to be solved for the cylinder motion. A large number of
papers deal with forced oscillation in one-degree-of freedom (1DoF)
cylinder motion, where the cylinder is typically restricted to move only in
transverse direction (e.g. Williamson and Roshko, 1988; Lu and Dalton,
1996; Meneghini and Bearman, 1997; Kaiktsis et al., 2007; Baranyi and
Dar�oczy, 2013; Tang et al., 2017) or in streamwise direction (e.g. Oka-
jima et al., 2004; Al-Mdallal et al., 2007; Mureithi et al., 2010). There are
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relatively few papers dealing with two-degree-of-freedom (2DoF) forced
motion (e.g. Jeon and Gharib, 2001; Stansby and Rainey, 2001; Baranyi,
2008; Peppa et al., 2016).

Another approach to the investigation of vortex-induced vibrations
(VIV) involves an elastically supported cylinder model, where cylinder
displacement is caused by lift and drag forces acting on the body. A large
number of studies have dealt with this model, including Bishop and
Hassan (1964), Bearman (1984, 2011), Sarpkaya (1995, 2004), Jauvtis
and Williamson (2004), Williamson and Govardhan (2004), Blevins
(1990), Moe and Wu (1990), and Nakamura et al. (2013). Cylinder
response is highly influenced by free stream velocity U∞, natural fre-
quency of the body fN, structural damping b, and the mass of the body m.

Vibrations due to vortex shedding are often modeled with 1DoF
transverse-only motion. Khalak and Williamson (1999) investigated the
VIV of a transversely oscillating cylinder and showed that the
mass-damping parameter m*ζ strongly influences the peak amplitude,
wherem* is the mass ratio (the ratio of the mass of the vibrating body and
that of the displaced fluid) and ζ is the structural damping coefficient. It
was shown that at low m*ζ three branches of cylinder response occur,
namely initial, upper and lower branches, where the upper branch is
associated with the highest oscillation amplitude. Feng (1968) studied
high mass-damping cases where only two branches (an initial branch
with low cylinder displacements and lower branch with high vibration
amplitudes) are observed. Brika and Laneville (1993) and Govardhan
and Williamson (2000) distinguished between the different branches
based on their vortex-shedding modes. The initial branch is associated
with 2S mode (two single vortices are shed in each motion cycle) while
2P mode (two vortex pairs shed in each motion cycle) belongs to the
lower and upper branches. Brika and Laneville (1993) found that the
transition between upper and lower branches is hysteretic and the flow is

quite sensitive to incremental changes in the reduced velocity.
Klamo et al. (2006) investigated how the system transitions between

two-branch and three-branch responses. In their study Reynolds number
and the structural damping were varied. It was concluded that m*ζ alone
is insufficient to predict the type of response; Reynolds number is also an
important influencing parameter. For small damping and high Re cases a
three-branch response was observed, while a two-branch response was
found for high damping and low Re cases.

Naturally, structures are not restricted to move only in one direction;
in most cases two-degrees-of-freedom (2DoF) oscillations are found.
Jauvtis and Williamson (2004), using an elastically supported cylinder,
kept the natural frequencies identical in the two directions (fNx ¼ fNy ¼
fN) and investigated a wide mass ratio range (m*< 25) using an exper-
imental approach. It was found that at high m* cases (m*¼ 6–25) in-line
oscillation has only a tiny effect on transverse vibration, which was also
found by Zhou et al. (1999) at low Reynolds numbers using numerical
techniques. Jauvtis and Williamson (2004) found that a three-branch
response occurs, as in 1DoF cylinder oscillation. Upon decreasing the
mass ratio below m*¼ 6 dramatic changes were observed. The existence
of a super-upper branch was reported where the vortex-shedding mode
was 2T type – two triple vortices shed in each vibration period.

However, in general, the natural frequencies in streamwise and
transverse directions are not identical, fNx 6¼ fNy . Sarpkaya (1995)
experimentally investigated 2DoF vortex-induced vibrations varying the
natural frequency ratio fNx/fNy between 1 and 2. These results were
compared with 1DoF cylinder oscillation results for fNx¼ fNy and a 19%
increase was observed in the transverse oscillation amplitude. In addi-
tion, two obvious peaks were identified at fNx¼ 2fNy. Dahl et al. (2006)
showed that by increasing the ratio of streamwise and transverse fre-
quencies in the range of fNx/fNy¼ 1–1.9, the phase angle between x and y

Nomenclature

b damping [kg/s]
CCW counterclockwise orbit on the upper loop of figure-eight
CD total drag coefficient, 2FD=ðρU2

∞dÞ [�]
CDp pressure drag coefficient [�]
CDv viscous drag coefficient [�]
CL total lift coefficient, 2FL=ðρU2

∞dÞ [�]
CLp pressure lift coefficient [�]
CLv viscous lift coefficient [�]
CW clockwise orbit on the upper loop of figure-eight
d cylinder diameter, length scale [m]
D dilation, non-dimensionalized by U∞/d
DoF degrees of freedom
FD drag per unit length of the cylinder [N/m]
FL lift per unit length of the cylinder [N/m]
FN reduced natural frequency, fNd/U∞ [�]
f *x;y oscillation frequency in x or y directions, respectively, non-

dimensionalized by d/U∞

fN natural frequency of the cylinder [1/s]
fv vortex-shedding frequency for a stationary cylinder [1/s]
k spring constant [kg/s2]
K coefficient between Reynolds number and reduced velocity

for constant natural frequencies, fNd2/ν [�]
m cylinder mass per unit length [kg/m]
m* mass ratio, 4m/(d2πρ) [�]
p pressure, non-dimensionalized by ρU2

∞
R radius, non-dimensionalized by d
rms root-mean-square value
Re Reynolds number, U∞d/ν [�]
St dimensionless vortex shedding frequency, Strouhal

number, fd/U∞

St0 dimensionless vortex shedding frequency for a stationary
cylinder at Reynolds number Re0

t time, non-dimensionalized by d/U∞

u, v velocities in x and y directions, non-dimensionalized by U∞

U∞ free stream velocity, velocity scale [m/s]
U* reduced velocity, U∞/(fNd) [�]
x, y Cartesian coordinates, non-dimensionalized by d
x0, y0 cylinder displacement in x and y directions, non-

dimensionalized by d
ζ structural damping coefficient, b=ð2 ffiffiffiffiffiffiffi

mk
p Þ [�]

Θ phase angle between streamwise and transverse
components of the cylinder motion [�]

ν kinematic viscosity of the fluid [m2/s]
ξmax, ηmax number of grid points in peripheral and radial direction,

respectively
ρ fluid density [kg/m3]
Φ phase angle between x0 and CD [�]
Φp phase angle between x0 and CDp [�]
Φv phase angle between x0 and CDv [�]

Subscripts
L lift
D drag
max maximum value
rms root-mean-square value
n component in the direction normal to the cylinder surface
pot potential flow
1, 2 on the cylinder surface, at the outer boundary of the

domain
0 refers to cylinder response (x0, y0) or to a stationary

cylinder (Re0, St0)
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