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a b s t r a c t

Modern engineering systems are becoming increasingly complex. Assessing their risk by simulation is
intimately related to the efficient generation of rare failure events. Subset Simulation is an advanced
Monte Carlo method for risk assessment and it has been applied in different disciplines. Pivotal to its
success is the efficient generation of conditional failure samples, which is generally non-trivial. Con-
ventionally an independent-component Markov Chain Monte Carlo (MCMC) algorithm is used, which is
applicable to high dimensional problems (i.e., a large number of random variables) without suffering
from ‘curse of dimension’. Experience suggests that the algorithm may perform even better for high
dimensional problems. Motivated by this, for any given problem we construct an equivalent problem
where each random variable is represented by an arbitrary (hence possibly infinite) number of ‘hidden’
variables. We study analytically the limiting behavior of the algorithm as the number of hidden variables
increases indefinitely. This leads to a new algorithm that is more generic and offers greater flexibility and
control. It coincides with an algorithm recently suggested by independent researchers, where a joint
Gaussian distribution is imposed between the current sample and the candidate. The present work
provides theoretical reasoning and insights into the algorithm.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modern engineering systems are designed with increasing
complexity and expectation of reliable performance. Rare failure
events with high consequences are becoming more relevant to risk
assessment and management. Unfortunately they are usually not
well-understood and can even be out of imagination based on
typical experience [1–3]. Studying failure scenarios allows one to
gain insights into their cause and consequence, providing infor-
mation for effective mitigation, contingency planning and
improving system resilience. The probability and the consequence
of failure events are two basic ingredients for trading off cost and
benefit in the design of engineering systems. Assessing risk
quantitatively requires proper modeling of the ‘input’ uncertain
parameters by random variables as well as the logical/physical
mechanism that predicts the ‘output’ quantities of interest. While
no mathematical model is perfect, useful information can be
gained if it is calibrated and interpreted properly, allowing one to
make risk-informed decisions.

Let X¼ ½X1; :::;Xn� be the set of uncertain parameters in the
problem, which are modeled by random variables. Without loss of

generality fXigni ¼ 1 are assumed to be standard Gaussian (zero
mean and unit variance) and i.i.d. (independent and identically
distributed). Dependent non-Gaussian random variables can be
constructed from Gaussian ones by proper transformation [4]. One
important problem in risk assessment is the determination of the
failure probability PðFÞ for a specified failure event F , which can be
formulated as an n-dimensional integral or an expectation:

PðFÞ ¼
Z

IðxAFÞϕðxÞdx¼ E½IðXAFÞ� ð1Þ

where IðU Þ is the indicator function, equal to 1 if its argument is
true and zero otherwise;

ϕðxÞ ¼ ð2πÞ�n=2exp �1
2

∑
n

i ¼ 1
x2i

 !
x¼ x1; :::; xn½ �T ð2Þ

is the n-dimensional standard Gaussian PDF.
Monte Carlo methods [5–7] provide a robust means for risk

assessment of complex systems. Problems of practical significance
currently pose three main challenges: small probability, ‘high
dimension’ (i.e., a large number of input random variables) and
high complexity (e.g., nonlinearity) in the input–output relation-
ship [8,9]. Small probability renders Monte Carlo method in its
direct form computationally expensive or prohibitive. High
dimension renders geometric intuitions in low dimensional space
inapplicable or misleading [10,11]. High complexity means that
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the input–output relationship is only implicitly known as a ‘black-
box’.

1.1. Subset simulation

Advanced Monte Carlo methods generally aim at reducing the
variance of estimators beyond direct Monte Carlo method but in
doing so they lose application robustness. Subset Simulation is a
method that is found to play a balance between efficiency and
robustness [12–15]. It has been applied to different disciplines and
used for developing algorithms for related problems such as sen-
sitivity [16–18] and design optimization problems [19–24]. There
are variants that take advantage of prior knowledge of the pro-
blem, e.g., casual dynamical systems [25], transition from linear to
nonlinear failure [26], meta-model [27]; or leverage on other
computational tools, e.g., delayed rejection [28], Kriging [29] and
neural networks [30].

Subset Simulation is based on the idea that a small failure
probability can be expressed as the product of larger conditional
probabilities of intermediate failure events, thereby potentially
converting a rare event simulation problem into a sequence of
more frequent ones. A general failure event is represented as
F ¼ fY4bg, where Y is a suitably defined ‘driving response’ char-
acterizing failure. In the actual implementation, Subset Simulation
produces estimates for the values of b that correspond to fixed
failure probabilities, from large to small values. The estimates
make use of samples that populate gradually from the frequent to
rare failure regions, corresponding to increasing threshold values
that are adaptively generated.

A typical Subset Simulation run starts with ‘simulation level’ 0,
where N samples of X are generated according to the parameter
PDF ϕðxÞ, i.e., direct Monte Carlo. The values of the response Y are
then calculated and sorted. The p0Nþ1 largest value is taken as
the threshold level b1 for simulation level 1, where p0 is the ‘level
probability’ chosen by the user (conventional choice is 0.1). The
top p0N samples of X are used as seeds for generating additional
samples conditional on Y4b1, to make up a population of N
conditional samples at level 1. The p0Nþ1 largest value of Y
among these samples is taken as the threshold level b2 for simu-
lation level 2. Samples for level 2 are generated and the procedure
is repeated for higher threshold levels until the level of interest is
covered.

1.2. Generation of conditional samples

The efficient generation of conditional failure samples, i.e.,
samples that are conditional on intermediate failure events, is
pivotal to Subset Simulation. This is conventionally performed
using an independent-component Markov Chain Monte Carlo
(MCMC) algorithm [12,31,7], which is applicable for high dimen-
sional problems and makes the algorithm robust to applications.
For each Xi, let p�i ðU ; UÞ be the proposal PDF assumed to be sym-
metric, i.e., Metropolis random walk. Suppose we are given a
sample Xð1Þ ¼ ½Xð1Þ

1 ; :::;Xð1Þ
n � distributed as the target conditional

distribution, i.e.,

ϕðxjFÞ ¼ PðFÞ�1IðxAFÞϕðxÞ ð3Þ
According to the algorithm the next sample Xð2Þ ¼ ½Xð2Þ

1 ; :::;Xð2Þ
n �

that is also distributed as ϕðxjFÞ is generated as follow:

Algorithm I (independent-component MCMC)
Step I. Generate X0 ¼ fX0

igni ¼ 1
For i¼ 1; :::;n

1. Generate ξi from the proposal PDF p�i ðU ;Xð1Þ
i Þ and Ui uni-

formly on [0, 1].

2. Calculate ri ¼ϕðξiÞ=ϕðXð1Þ
i Þ.

Set X0
i ¼ ξi if Uirri. Otherwise set X0

i ¼ Xð1Þ
i .

End i
Step II (Check failure)

Set Xð2Þ ¼X′ if X0AF (accept). Otherwise set Xð2Þ ¼Xð1Þ (reject).

In the above, ϕðxÞ ¼ ð2πÞ�1=2expð�x2=2Þ denotes the one-
dimensional standard Gaussian PDF. The correlation among the
conditional samples is an important factor influencing the effi-
ciency of Subset Simulation. It is high (hence low efficiency) if X0 is
rejected too often in either Step I (MCMC mechanism) or Step II
(not lying in the failure region); or when fξigni ¼ 1 is of close
proximity to X (governed by the proposal PDF).

1.3. Objectives and key findings

Theoretical arguments and numerical experience reveal that as
the number of variables increases the rejection of the candidate X0

tends to be governed by Step II; the efficiency of Subset Simulation
is insensitive to the type of proposal PDF and may even be higher
[12,15]. Motivated by this, for any given problem (generally finite
dimensional) we consider an equivalent problem with an arbitrary
number of random variables and investigate the limiting behavior
of the algorithm as the number increases indefinitely. Specifically,
each Gaussian variable Xi can be represented by an arbitrary
(hence possibly infinite) number of ‘hidden’ Gaussian variables. As
the key result of this work, we show that applying Algorithm I to
the equivalent problem results in the following ‘limiting algo-
rithm’ as the number of hidden variables is infinite:

Algorithm II (Limiting algorithm)
Step I. Generate X0 ¼ fX0

igni ¼ 1

Generate X0 ¼ ½X0
1; :::;X

0
n� as a Gaussian vector with independent

components, with mean vector ½a1Xð1Þ
n ; :::; anX

ð1Þ
n � and variances

½s21; :::; s2n�.
Step II (Check failure)

Set Xð2Þ ¼X′ if X0AF (accept). Otherwise set Xð2Þ ¼Xð1Þ (reject).

Algorithm II differs from Algorithm I only in Step I. Here, 0r
sir1 is the standard deviation of the candidate X0

i from the cur-

rent sample and ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�s2i

q
. It is related to the proposal PDF but

which is no longer relevant because the algorithm is now con-
trolled directly through faigni ¼ 1 or equivalently fsigni ¼ 1. This algo-
rithm is remarkably simple and MCMC rejection no longer appears
explicitly. As the algorithm does not depend on any details of the
hidden variables, the infinite-dimensional equivalent problem is
only involved at a conceptual level to arrive at the limiting result.

The limiting algorithm shows that it is possible to generate the
candidate in Step I simply as a Gaussian vector whose statistics
depend on the current sample. In fact the same algorithm has been
recently proposed by independent researchers [32] who inge-
niously imposed this condition and verified this possibility. The
present work provides a theoretical reasoning leading to the
algorithm via a completely different route.

This paper is organized as follow. We first describe in Section 2
the equivalent problem with hidden variables that links the ori-
ginal problem and the conceptual infinite-dimensional problem.
For ease of reading, the limiting behavior of the candidate and
hence the MCMC algorithm is summarized in Section 3. Examples
are then given in Section 4 to illustrate the results. The remaining
sections provide the derivations for the limiting behavior and the
results in Section 3.
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