
An improved model updating technique based on modal data

Kang Liu a,b,c, Ren-Jun Yan b, C. Guedes Soares c,*

a Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan, 430063, China
b School of Transportation, Wuhan University of Technology, Wuhan, 430063, China
c Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior T�ecnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal

A R T I C L E I N F O

Keywords:
Finite element model
Model updating
Damage detection
CMCM
ICMCM
Numerical rank

A B S T R A C T

A novel technique of model updating named improved cross-model cross-mode (ICMCM) is presented. It is based
on extracted modal data and to avoid a rank deficient problem and a biased solution of the derived linear
equations, this method changes the form of coefficient matrix and adds more independent equations on the basis
of the original cross-model cross-mode (CMCM) method. Truncated singular value decomposition is utilized for
possible solutions. Results of two numerical investigations, including model updating of a simply-supported beam
and damage detection on a jacket platform, indicate better accuracy and stability of the proposed technique. A
comparative rank study reveals that this improved technique handles more unknowns with the same amount of
extracted modes. Several damage cases are considered with modal data contaminated by noise. Results affected by
noise level, extracted mode combinations, and different damage cases are discussed. Monte Carlo simulations
show that even mode shapes contaminated with up to 3% added noise, it would still be possible to obtain
satisfactory results with proper selected modes.

1. Introduction

In recent years, finite element analysis has become an essential tool
for structural design. However, the fact that sometimes there is a large
difference between numerical estimation and experimental measure-
ments has demanded more accurate and reliable models. Three classes of
modeling error are normally considered, i.e. parameter error, discrete
error, and structural error deduced by theoretical hypothesis and other
unknowns. Any of uncertainties in modeling might lead to deviation and
even to wrong estimation. One general purpose of model updating is to
make better correspondence between dynamic response of the analytical
model and the real structure so that a more practical model could be
applied for dynamic prediction, optimal design or reliability analysis.
The modal parameters of structure, e.g. frequencies and mode shapes,
change with modifications of physical properties. This conclusion also
produces certain cases where model updating techniques are sometimes
interpreted as damage detection procedure. When better correspondence
of dynamic response are ensured between intact and damaged structure,
the corrected physical properties from intact model could be regarded as
damage indications.

The model updating technique has been developing rapidly. The
general steps and problems are well elaborated in the book Finite
Element Model Updating in Structural Dynamics (Friswell and

Mottershead, 1995). Usually two sorts of model updating methods are
considered, (i) direct matrix approach, which corrects the elements of the
system matrix in a process that may destroy symmetry and physical
connectivity of the original system, frequently leading to results with no
physical significance. A second class is defined as (ii) iterative parameter
approach, mostly based on sensitivity of the chosen dynamic response
with respect to certain parameters. This approach always calls for
massive calculations and convergent results are not always ensured.

Many researchers have proposed various methods using dynamic data
in model updating or damage detection, such as modal strain energy
(Rezaei et al., 2016; Liu et al., 2014), wavelet transform (Asgarian et al.,
2016) or damping ratio (Budipriyanto et al., 2007). Several artificial
intelligence algorithms, e.g. artificial neural network (Zubaydi et al.,
2002), genetic algorithm (Malekzehtab and Golafshani, 2013), particle
swarm optimization (Malekzehtab et al., 2012) have been introduced.
Mottershead et al. (2011) gave a tutorial of model updating using
sensitivity method, and probabilistic approaches (Khodaparast et al.,
2008; Silva et al., 2016a,b) are applied to a set of physical structures.
Literature reviews of model updating (Mottershead and Friswell, 1993),
as well as of damage detection (Doebling et al., 1996) using vibration
characteristics have been well elaborated.

Among many approaches, the cross-model cross-mode method
(CMCM) (Hu et al., 2007) was proposed, which directly corrects stiffness
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and mass matrix without iterative computation, thus avoiding the
convergence problem. A further attempt of simultaneously updating
mass, stiffness and damping matrix was developed by Hu and Li (2007).
In the CMCMmethod, there is no necessity for pairing or scaling of mode
shapes, although the need of complete mode shape seems to be the only
limitation. This drawback has been considered by some researchers
(Silva et al., 2016a,b; Drozg et al., 2018). By several modal expansion and
model reduction techniques, Li et al. (2008) proposed the CMCMmethod
by taking incomplete modal data into damage detection, and Wang et al.
(2015) presented an experimental study on offshore platform.

These studies have confirmed the validity of the CMCM method in
few given conditions or with limited number of unknowns, but without
considering the rank study of the coefficient matrix and noise effect. In
other words, the stability of the solution is not always guaranteed. In
essence, the CMCM method seeks to solve a system of linear equations
which can lead to solutions without physical meaning if the coefficient
matrix is rank deficient, as well as frequently producing biased answers
especially when the extracted modal data is contaminated by noise. It is
normally expected a unique solution in least-square sense with a full rank
coefficient matrix while several numerical treatments, namely the regu-
larization method, has to be conducted to correct against noise effect.

On the basis of the original CMCM method, the proposed ICMCM
approach changes the coefficient matrix into a difference form, and in
order to satisfy full rank condition for linear equations created by modal
data, new expressions are added. Results of two numerical investigations,
including model updating of a simply-supported beam and damage
detection of a jacket platform, indicate better the accuracy and stability
of the proposed technique. It is shown that the proposed ICMCMmethod
provides a higher rank of the coefficient matrix with the same amount of
modal data, thus larger number of unknowns could be determined in an
optimized least square sense. In the second example, several damage
cases are considered with modal data contaminated by noise. Results
affected by the noise level, extracted mode combination, and different
damage cases are discussed. Monte Carlo simulations show that even
when mode shapes are contaminated with up to 3% added noise, one can
still obtain satisfactory results if proper modes are selected.

In section 2, the theoretical background of the previous CMCM
method and of the proposed ICMCM technique are described. Section 3
shows a brief introduction seeking for solution of linear equations,
including the truncated singular value decomposition which is adopted
in this paper. Two numerical applications are investigated and results are
compared in section 4. Main conclusions are given in section 5.

2. Theoretical background

2.1. Original CMCM method

In the CMCM method (Hu et al., 2007), an undamped-system is
assumed where the stiffness matrix and the mass matrix of the structure,
denoted by K and M, are extracted from the baseline FE model. The su-
perscript � denotes the parameters that stem from experimental
measurements.

The expressions begin with the i th characteristic equation of the
baseline FE model

KΦi ¼ λiMΦi (1)

and the j th characteristic equation from the experimental measurements

K*Φ*
j ¼ λ*j M

*Φ*
j ; (2)

where ðλi;ΦiÞ and ðλ�j ;Φ�
j Þ denote the i th and j th modal pairs from the

baseline FE model and experimental measurements respectively. K� and
M� represent stiffness and mass matrix of the updated FE model respec-
tively, which are unknown at present.

Assuming that K� and M� can be written in combination form with

respect to all elements of the baseline FE model, one concludes that

K� ¼ Kþ
XNe

n¼1

αnKn (3)

and

M� ¼ Mþ
XNe

n¼1

βnMn; (4)

where Ne is the total number of elements; Kn and Mn are stiffness and
mass matrix of the n th element written in global coordinate, respec-
tively. By definition, αn and βn stand for correction coefficients which are
expected to be determined.

Premutiplying Eq. (1) by ðΦ*
j Þ

T
and Eq. (2) by ðΦiÞT yields

�
Φ*

j

�T
KΦi ¼ λi

�
Φ*

j

�T
MΦi (5)

and

ðΦiÞTK*Φ*
j ¼ λ*j ðΦiÞTM*Φ*

j : (6)

Note that K and M are symmetric, and the transpose of a scalar stays the
same, one shows that the transposition of Eq. (5) yields

ðΦiÞTKΦ*
j ¼ λiðΦiÞTMΦ*

j : (7)

Dividing Eq. (6) by Eq. (7), one thus has

ðΦiÞTK*Φ*
j

ðΦiÞTKΦ*
j

¼ λ*j
λi

ðΦiÞTM*Φ*
j

ðΦiÞTMΦ*
j

: (8)

Substituting Eqs. (3) and (4) into Eq. (8) results in

1þ
XNe

n¼1

αnC
y
n;ij ¼

λ*j
λi

 
1þ

XNe

n¼1

βnD
y
n;ij

!
; (9)

where

Cy
n;ij ¼

ðΦiÞTKnΦ*
j

ðΦiÞTKΦ*
j

(10)

and

Dy
n;ij ¼

ðΦiÞTMnΦ*
j

ðΦiÞTMΦ*
j

: (11)

Rearranging and replacing ij with a new index m, Eq. (9) becomes

XNe

n¼1

αnCy
n;m � bym

XNe

n¼1

βnD
y
n;m ¼ bym � 1 (12)

or

XNe

n¼1

αnCy
n;m þ

XNe

n¼1

βnE
y
n;m ¼ f ym; (13)

where bym ¼ λ*j
λi
, Ey

n;m ¼ �bymD
y
n;m and f ym ¼ bym � 1.

The symbol y, represents the term in equations that consist of the i th
component from the FE model along with the j th component from the
experimental measurements. When the first Ni th numbers of modes are
obtained from the FE model, and the first Nj th numbers of modes are
extracted from the experimental measurements, a total number of Nm ¼
Ni � Nj equations can be formulated from Eq. (13). Rewriting those
equations in matrix form, one gets
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