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A B S T R A C T

Offshore structures are often founded on long, slender piles that extend for a substantial distance above the
ground surface. This paper presents a novel unified model to analyze the free vibration and buckling of partially
embedded end-bearing piles subjected to axial compressive load. Consideration is given to the tapered piles of
variable cross-sectional shape with constant volume. The governing differential equation of the motions is
derived, and solved by using the Runge-Kutta method in combination with the Regula-Flasi method. The accuracy
of the proposed model is confirmed by comparing the obtained calculations with existing closed-form and nu-
merical solutions. Numerical results for the natural frequency, buckling load and corresponding modal dis-
placements are provided, which are analyzed to highlight the effects of the parameters related to the cross-
sectional shape, taper ratio and embedment of the pile, soil stiffness and compressive force as well as the end
constraint. The geometry and material parameters that statically and dynamically yield the strongest piles with
fixed volume are identified. The analytical model is beneficial for the optimum design of the soil-pile system in
engineering applications.

1. Introduction

Long, slender piles that extend above the ground are widely used for
offshore structures such as causeways, cross-sea bridges, wind turbines
and jacket platforms. Stability and free vibration analyses of the pile
foundations are inherent parts of the design, in order to prevent collapse
or severe damage of the pile-supported structures due to static load and
resonance.

Extensive literature exists concerning the vibration behavior of beam-
columns without soil medium, and many studies have been devoted to
modeling the free vibration of beam-columns on elastic foundation (e.g.,
Chen, 2002; Balkaya et al., 2009; Li et al., 2012). However, a few studies
have been performed to characterize the free vibration of end-bearing
piles (or axially loaded beam-columns in a Winkler foundation). Ragab
and Aggour (1986) examined the effect of lumped mass on the funda-
mental frequency of a fully embedded pile. Valsangkar and Pradhanang
(1987) presented the closed-form solution for predicting the natural
frequency of partially supported piles. Catal (2002) explored the influ-
ence of shear deformation on the free vibration of partially embedded
piles. Yesilce and Catal (2008) dealt with the free vibration of the piles
embedded in two-layered soil. Yesilce (2011) used the differential
transform method (DTM) and differential quadrature element method

(DQEM) for analyzing the free vibration of fully embedded
Reddy-Bickford piles.

Over the past many years, several studies have been undertaken to
investigate the buckling response of end-bearing piles. For example,
Bjerrum (1957) addressed the theoretical buckling load of a fully
embedded hinged-hinged pile. Davisson and his colleague (1963, 1965)
formulated the governing differential equations for estimating the
buckling of fully and partially embedded piles and reported the numer-
ical solutions for various combinations of end conditions. Lee (1968)
validated the solutions of Davisson and Robinson (1965) by comparing
the results from physical modeling. Prakash (1987) employed the energy
method to develop an analytical model for the buckling capacity of fully
embedded piles. West et al. (1997) interpreted the buckling load and
mode shape of fully embedded piles and identified the phenomenon of
modal clustering. Shields (2007) suggested a semi-empirical formulation
for pile buckling loads and pointed out that with the ongoing evolution of
pile applications to include higher pile capacities, the common assump-
tion that buckling does not occur for fully embedded piles is no longer
valid. By accounting for material non-linearity, Vogt et al. (2009) studied
the buckling of fully embedded piles in soft soil. Catal (2014) used the
DTM to determine the buckling load of evaluating semi-rigid connected
and partially embedded piles. Based on the cusp catastrophe theory,
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Chen et al. (2015) obtained the buckling load of fully embedded piles.
The objective of this study is to present a unified model for estimating

free vibration and buckling of partially embedded end-bearing piles
under axial compressive load. Here the volume of the pile is always held
constant, although the geometry of the pile is dependent on the variation
in the shape and area of cross section along the axis of the pile. The
governing equation of the problem is derived and solved numerically.
The versatility of the analytical model is illustrated using numerical ex-
amples of the soil-pile system for a wide range of geometry and material
properties. The computed results are compared with closed-from and
numerical solutions available.

2. Mathematical formulation

Fig. 1(a) shows a partially supported homogenous pile with total
length l and embedded length le subjected to a compressive axial load P at
the top end of the pile. In Cartesian coordinate system (x, y), the origin is
taken to be at the bottom end of the pile. The pile has a regular polygon
cross section with variable depth d, defined as the distance between the
centroid and vertex, throughout its length. The volume of the pile is taken
to be constant but the upper and lower cross section of the pile is
changed. Linear variation is considered for the depth of the pile as

F ¼ ðr � 1Þ x
l
þ 1 for 0 � x � l (1)

where, r is the taper ratio, defined as

r ¼ dt
db

(2)

in which, dt and db are the cross-sectional depths at top and bottom ends,
respectively. It is noted that the pile is tapered up with x direction for
0< r< 1 and tapered down for r> 1. Obviously, the case of prismatic pile
corresponds to r¼ 1. The cross-sectional depth d, projection depth w,
area A and moment of inertia I of the cross section of the pile are given by

d ¼ dbF (3)

w ¼ c1dbF; c1 ¼ 1þ cos
� π
2m

�
(4)

A ¼ c2d2bF
2; c2 ¼ m

2
sin
�
2π
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�
(5)

I ¼ c3d4bF
4; c3 ¼ c2

12
cos2

�π
m

�h
3þ tan2

�π
m

�i
(6)

where, m is the positive integer (�3), which means the side number of
the regular polygon cross section. From Eqs. (4)–(6), it is clear that when
m reaches infinity, the values of c1, c2 and c3 are 2, π and π/4, respec-
tively, i.e., solid circular cross section. The volume V of the pile can be
expressed as

V ¼ ∫ l
0Adx ¼ c2c4d2bl; c4 ¼

1
3

�
r2 þ r þ 1

�
(7)

Inserting db in Eq. (7) into Eqs. (3)–(6) yields

d ¼
ffiffiffiffiffiffiffiffiffiffi
V

c2c4l

r
F; (8)

w ¼ c1

ffiffiffiffiffiffiffiffiffiffi
V

c2c4l

r
F; (9)

A ¼ V
c4l

F2; (10)

I ¼ c3

�
V

c2c4l

�2

F4 (11)

For the embedded portion of the pile, as shown in Fig. 1(a), the lateral
stiffness of the soil is modeled with an elastic Winkler foundation with a
constant coefficient of subgrade reaction K with unit of force per length3.
This assumption is commonly used for cohesive soil (Prakash and
Sharma, 1990; Randolph and Gourvenec, 2011). The soil reaction RS is
proportional to the lateral deflection y of the pile and is formed as

RS ¼ Kwy (12)

For a harmonic vibration mode, the inertial force against the deflec-
tion are supposed by

FI ¼ ρAω2
i y (13)

Fig. 1. Definition sketch of proposed model: (a) a
partially embedded tapered pile with constant vol-
ume in the Cartesian coordinate system; (b) defor-
mation and forces on differential pile element.
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