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a b s t r a c t

This paper employs a three-dimensional (3D) non-hydrostatic model to simulate nonlinear focusing
wave groups. The non-hydrostatic model utilizes an explicit projection method to solve the Navier–
Stokes equations. To accurately simulate the steep free surface involved in focusing waves, the model is
built upon a general boundary-fitted coordinate system. This grid system allows for a great adaptability
of the vertical discretization and meanwhile maintains the boundary-fitted properties of better fitting
the bed and free surface. The advantage of the general boundary-fitted model is first validated by two
test cases of nonlinear waves, including nonlinear standing waves and two-dimensional (2D) focusing
freak wave. Then, the model is applied to simulate 2D focusing waves in deep and intermediate-water
depths and 3D focusing waves in deep-water depth. By comparing with experimental data, the model
results well reproduce the main characteristics of 2D deep-water focusing waves and 2D intermediate-
water focusing waves as well as 3D deep-water focusing waves, demonstrating the model's capability to
resolve 2D or 3D focusing wave groups. Furthermore, in the test of 2D intermediate-water focusing
waves, the downstream shifting of the focusing position and time is also studied numerically, which is
not presented in the experiments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Whether in open seas or coastal areas, wave group focusing is
one of the physical mechanisms contributing to the formation of
freak water waves, which have destructive effects on marine
structures. Many physical experiments (Baldock and Swan, 1996;
Baldock et al., 1996; Brown and Jensen, 2001; Johannessen
and Swan, 2001; Kit et al., 2000; Ma et al., 2010; Onorato et al.,
2006; Toffoli et al., 2010) have been carried out to study the
focusing process based on deterministic or statistical methods.
In parallel with the experimental studies, efforts have been
focused on establishing numerical models in the hope that more
details of focusing wave groups may be obtained. In the past few
decades, potential flow models (Ducrozet et al., 2012; Fochesato
et al., 2007; Toffoli et al., 2010; Yan and Ma, 2008) and non-
linear Schrödinger-type equations models (Chiang et al., 2007;
Henderson et al., 1999; Osborne et al., 2000; Toffoli et al., 2010) are
widely used to study focusing wave groups. The potential flow
equation is derived from the incompressible Navier–Stokes equa-
tions (NSE) under the assumption of perfect fluid and irrotational

motion, while the nonlinear Schrödinger-type equations can
be viewed as the deviation from the potential flow equation.
In contrast to non-hydrostatic models based on the NSE, they
are computationally very efficient, especially for the nonlinear
Schrödinger-type equations models. However, with the increase in
computational power, non-hydrostatic models for the simulation
of focusing wave groups are getting more attention (Young and
Wu, 2010; Young et al., 2007). Most importantly, in contrast to
aforementioned potential flow models and nonlinear Schrödinger-
type equations models, non-hydrostatic models have the potential
for simulations of freak waves resulting from various mechanisms,
such as geometrical focusing, wave–current interaction, atmo-
spheric forcing, modulation instability, etc. For more details
on these different mechanisms see the reviews by Kharif and
Pelinovsky (2003).

To develop numerical models based on the NSE, the treatment
of free surface is one of the main issues. Many well-known
methods to simulate this moving boundary have been successfully
incorporated in the NSE, such as the volumes of fluid method
(VOF), the level set method and the smoothed particle hydro-
dynamics method (SPH). All of these methods are capable of
dealing with complicated free surfaces (e.g. overturning waves),
but their applications mainly focus on two-dimension (2D) pro-
blems because of high computational expense. Cui et al. (2012)
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employed an improved VOF model to investigate effects of the
uneven bottom topography on 2D freak waves. Dao et al. (2011)
developed a SPH model enhanced with parallel computing to
reproduce well 2D freak waves and their breaking process.
In contrast to these models, the so-called non-hydrostatic models
employ a more efficient method that tracks the free surface
motion using a single-valued function of the horizontal plane.
With such a method capturing the free surface, non-hydrostatic
models can predict accurately a range of short wave motions,
where wave shoaling, nonlinearity, dispersion, refraction, and
diffraction phenomena occur. For more details about this, the
reader is referred to Ai et al. (2011), Badiei et al. (2008), Stelling
and Zijlema (2003), Yuan and Wu (2006), Young et al. (2009) and
Zijlema and Stelling (2005). Moreover, with momentum conserva-
tive properties non-hydrostatic models can accurately predict
wave breaking and run-up in the surf zone (Ai and Jin, 2012;
Zijlema and Stelling, 2008; Zijlema et al., 2011) and by coupling a
turbulence model, it is also capable of simulating complex wave-
structure interactions (Ai and Jin, 2010; Li and Lin, 2001). However,
to accurately simulate nonlinear focusing wave groups is still
challenging for non-hydrostatic models.

The spatial–temporal focusing of wave groups at one point in
space and time produces steep water waves, which results in one
of the difficulties on developing a boundary-fitted non-hydrostatic
model. It is well-known that in simulating steep free surface flows
or flows over steep bottom topography, traditional boundary-fitted
models (e.g. σ-coordinate models) are inaccurate because large
errors may arise in the discretization of pressure gradient term. To
reduce the errors of boundary-fitted models, there are many
methods, such as implementing higher-order discretization to
estimate the pressure gradient term (Beckman and Haidvogel,
1993; McCalpin, 1994), transforming the boundary-fitted grid back
to a Cartesian system (Slordal, 1997) and using a general
boundary-fitted grid system (Deleersnijder and Beckers, 1992;
Decoene and Gerbeau, 2009; Shchepetkin and McWilliams,
2005), etc. The aforementioned methods have been successfully
implemented in the ocean model, which mainly focuses on the
simulation of stratified free surface flows over steep bottom
topography. Recently, Young et al. (2007) developed a higher-
order σ-coordinate non-hydrostatic model, in which a higher-
order finite difference scheme is applied to discretize the hori-
zontal pressure gradient term. Their model well predicts nonlinear
surface waves (Young et al., 2007) and focusing wave groups
(Young and Wu, 2010) with steep free surfaces. Unfortunately, this
model is restricted to 2D problems and it is difficult to extend it to
a three-dimensional (3D) model because of the implementation of
higher-order spatial discretization. In this paper, we will develop a
3D non-hydrostatic model based on a general boundary-fitted grid
system. It has been demonstrated that a model with the general
boundary-fitted grid system can effectively reduce errors in the
discretization of pressure gradient in the simulation of stratified
free surface flows over steep bottom topography (Decoene and
Gerbeau, 2009). Here, we will present that the general boundary-
fitted non-hydrostatic model also can accurately resolve steep
surface waves.

For 3D focusing wave simulations, the main restriction of non-
hydrostatic models is the computational efficiency. For the numer-
ical solution of 3D non-hydrostatic models, almost all of the
computational time is spent in resolving the Poisson equation,
since the overall efficiency of the numerical code will depend on
its performance. In this study, the general boundary-fitted non-
hydrostatic model is developed based on the former model (Ai et
al., 2011), which adopted a new grid arrangement to construct a
symmetric and positive definite Poisson equation. Therefore, the
model is computationally very efficient by using the precondi-
tioned conjugate gradient method to solve the Poisson equation.

The remainder of this paper is organized as follows. Section 2
presents the governing equations and boundary conditions. The
numerical algorithms used in solving the non-hydrostatic model
and the general boundary-fitted grid system are described in
Section 3. Validations of the advantage of the general boundary-
fitted grid system are presented in Section 4. Model applications to
focusing wave groups and conclusions are provided in Sections
5 and 6, respectively.

2. Governing equations and boundary conditions

2.1. Governing equations

Non-hydrostatic free surface flows are governed by the 3D
incompressible Navier–Stokes equations, which are expressed in
the following form, by splitting the pressure into hydrostatic and
non-hydrostatic ones, p¼ gðη�zÞþq:
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where t is the time; u, v and w are the velocity components in the
horizontal x, y, and vertical z directions, respectively; p is the
normalized pressure divided by a constant reference density; η is
the free surface elevation; q is the non-hydrostatic pressure
component; g is the gravitational acceleration; v is the kinematic
viscosity.

2.2. Boundary conditions

Boundary conditions are required at all the boundaries of a 3D
domain including the free surface and the bottom. At the moving
free surface and the impermeable bottom, kinematic boundary
conditions are applied. To calculate the moving surface, the follow-
ing free surface equation is used, which is obtained by integrating
the continuity Eq. (1) over the water depth and applying the
kinematic free surface condition and bottom condition:
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where �hðx; yÞ is the bottom surface.
At the inflow boundary, in order to generate focusing waves,

the normal velocity components are specified as follows.
For 2D (or unidirectional) focusing waves, following Young

et al. (2007), the imposed normal velocity components can be
written as

uðx; z; tÞ ¼ ∑
N

n ¼ 1
anωn

cosh ½knðhþzÞ�
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cos ½knðx�xf Þ�ωnðt�tf Þ�
� �
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where N is the number of frequency components; an defines the
amplitude of each component; and kn and ωn denote the wave-
number and frequency of each component, respectively, satisfying
the linear dispersion relationship. In addition, xf and tf are the
theoretical focusing position and time, respectively.

For 3D (or directional) focusing waves, the wave group is
defined by a specified range of wave components having the
required spread in both frequency and direction. The imposed
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