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a b s t r a c t

The uncertainty quantification of the reactivity coefficients such as the fuel temperature coefficient (FTC)
and the moderator density coefficient (MDC) is crucial for the nuclear reactor safety margin evaluation.
This paper proposes a continuous-energy MC second-order perturbation (MC2P) method as a new way to
estimate efficiently the sensitivity of reactivity coefficients to nuclear cross section data. The proposed
MC2P method takes into account the second-order effects of the fission operator and the fission source
distribution. The effectiveness of the MC2P method implemented in a Seoul National University MC code,
McCARD, is demonstrated in a Godiva 235U density coefficient problem via comparison of its results with
direct subtraction MC calculation. It is shown that the new method can predict the cross section sensi-
tivities of the reactivity coefficient more accurately even with much smaller number of MC history sim-
ulations than the direct subtraction MC method. It is also shown that the proposed method is applicable
for quantifying the uncertainties of the MDC of a LWR pin cell problem and the FTC of a CANDU 6 lattice
cell problem due to the uncertainties of the nuclear cross section input data represented by nuclear cross
section covariance data.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Reactivity coefficients such as the fuel temperature coefficient
(FTC) and the moderator density coefficient (MDC) of a nuclear
reactor are one of important reactor physics design parameters
indispensable to assess its safety and assure its safe operation.
Therefore, an accurate estimation of the reactivity coefficients is
crucial to clarify the safety issue of those reactors whose reactivity
coefficients are estimated in the proximity to zero, as observed in
the FTC of the equilibrium core of CANDU 6 (Schaubel, 2008;
Kim et al., 2016). For the accurate estimation of the reactivity coef-
ficients, a direct subtraction (Kim et al., 2016) or the perturbation
method (Greenspan, 1976; Williams, 1986) can be applied in the
Monte Carlo (MC) neutron transport calculations with
continuous-energy cross section libraries and a detailed geometry
model. With increasing computing power, the MC direct subtrac-
tion method which calculates the reactivity coefficient by subtract-
ing reactivities obtained at a nominal state and a perturbed state
due to a small change of a nuclear design parameter has been suc-
cessfully applied for the CANDU 6 FTC estimation using an extre-
mely large number of neutron histories. The advanced MC

perturbation methods were demonstrated to estimate the density
coefficients (Rief, 1984; Nagaya and Mori, 2005; Shim and Kim,
2011; Kiedrowski and Brown, 2013) and the FTC (Shim and Kim,
2014) with great efficiency.

In addition to the accurate estimation of the reactivity coeffi-
cients, their uncertainty quantification is an important subject for
their confidence interval and the safety margin evaluations. There
are two main approaches to quantify the uncertainty of a nuclear
performance parameter – the stochastic sampling method and
the sensitivity and uncertainty analysis method (Cacuci, 2003) –
besides recent advances in the uncertainty quantification method-
ology such as the efficient subspace method (Abdel-Khalik et al.,
2008) and the polynomial chaos expansion method (Perkó et al.,
2014). The uncertainty of the sodium void reactivity due to the
nuclear data uncertainties has been calculated (Rochman et al.,
2011) by a stochastic sampling approach in which many MC runs
are performed with varying a set of randomized nuclear data. For
an efficient uncertainty quantification, the sensitivity and uncer-
tainty analysis has been widely adopted based on the first-order
perturbation theory. In the early stage of the generalized perturba-
tion theory development, the sensitivity function for reactivity
worth ratios has been expressed (Greenspan, 1982) in a form of
the bilinear functional ratio. Williams (Williams, 2007) presented
a formulation to express the sensitivity of an eigenvalue difference
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to a cross section using eigenvalue sensitivities at the two different
states of a nuclear system, which are obtained by the MC perturba-
tion techniques from two independent MC runs. This method
(referred to as Williams’ method hereafter) was applied to evaluate
the uncertainty of the CANDU coolant void reactivity due to the
nuclear data uncertainties. Williams’ method is effective for large
perturbation problems such as uncertainty quantifications of the
coolant void reactivity and the control rod worth but may require
a large amount of neutron history simulations to estimate accu-
rately sensitivities of the reactivity coefficients such as the FTC.

Objectives of this paper are to develop an alternative MC
method to estimate the sensitivity of the reactivity coefficient to
cross section from a single MC run by applying second-order eigen-
value perturbation techniques (Rief, 1984; Nagaya and Mori, 2011)
and to apply the developed method for the uncertainty quantifica-
tion of the reactivity coefficient. Rief (1984) developed earlier the
second-order differential operator sampling (DOS) method by tak-
ing into account second-order derivatives of the transport kernels
and Morillon (1998) extended it to an arbitrary order perturbation
estimation. Recently Nagaya and Mori (2011) devised a fission
source perturbation (FSP) algorithm to calculate higher-order
terms of the perturbed source effect (PSE) which can be incorpo-
rated with the conventional DOS method to improve the accuracy
of MC perturbation estimations. In Section 2, the new sensitivity
calculation algorithm for the reactivity coefficient is derived by
extending the existing second-order DOS (Rief, 1984) and FSP
(Nagaya and Mori, 2011) methods into eigenvalue sensitivities to
two different variables. The proposed MC second-order perturba-
tion (MC2P) method is implemented in the Seoul National univer-
sity Monte Carlo (MC) code, McCARD (Shim et al., 2012) and tested
in a two-group homogeneous infinite medium problem by
comparing MC2P results with analytic solutions. Its calculation
efficiency is examined for the density coefficient of Godiva (Blair
et al., 2006) by comparing with the Williams’ method. The pro-
posed method is also applied to quantify the uncertainties of the
MDC of a LWR pin cell problem and the FTC of a CANDU 6 lattice
cell model (Yoo et al., 2015) due to the nuclear covariance data.

2. Second-Order perturbation method for reactivity coefficient
sensitivity estimation

2.1. Sensitivity of reactivity coefficient

The MC reactor design calculations are based on the reactor
eigenvalue equation expressed in the operator notation by

S ¼ 1
k
HS; ð1Þ

where S is the fission source distribution and k is the multiplication
factor. H is fission operator with HS in Eq. (1) meaning

HS ¼
Z

dP0HðP0 ! PÞSðP0Þ; ð2Þ

where P and P0 denote state vectors of a neutron in the six-
dimensional phase space, ðr; E;XÞ and ðr0; E0;X0Þ, respectively.
HðP0 ! PÞ means the number of first-generation fission neutrons
born per unit phase space volume about P, due to a parent neutron
born at P0, which can be explicitly expressed in terms of transport
kernels as (Shim and Kim, 2011)

HðP0 ! PÞSðP0Þ ¼
X1
p¼0

Z
dE00

Z
dX00Cf ðr;E00;X00 ! E;XÞ

�
Z

dr0Ks;pðr0;E0;X0 ! r;E00;X00ÞTðE0;X0;r0 ! r0ÞSðP0Þ;
ð3Þ

where the fission collision kernel, Cf, is defined by

Cf ðr; E00;X00 ! E;XÞ ¼ vðE00 ! EÞ
4p

� mðE
00ÞRf ðr; E00Þ
Rtðr; E00Þ : ð4Þ

m is the mean number of neutrons produced from a fission reaction
and v is the energy spectrum of the fission neutron. Ks,p is the p-th
scattering kernel defined by

Ks;0ðP0 ! PÞ ¼ dðP0 � PÞ;
Ks;1ðP0 ! PÞ ¼ KsðP0 ! PÞ;
Ks;pðP0 ! PÞ ¼

Z
dPp�1 � � �

Z
dP1KsðPp�1 ! PÞ � � �KsðP0 ! P1Þ;

p ¼ 2;3; . . . ;

ð5Þ
where Pp (p = 0,1,. . .) denote ðrp; Ep;XpÞ. Ks is the transition kernel
defined by a product of the scattering collision kernel, Cs, and the
free flight kernel, T, as follows;

KsðP0 ! PÞ ¼ TðE;X; r0 ! rÞ � Csðr0; E0;X0 ! E;XÞ; ð6Þ

TðE;X; r0 ! rÞ ¼ Rtðr; EÞ
jr� r0j2

exp �
Z jr�r0 j

0
Rt r� s

r� r0

jr� r0j ; E
� �

ds

" #

� d X � r� r0

jr� r0j � 1
� �

; ð7Þ

Csðr0; E0;X0 ! E;XÞ ¼
X
m

X
r–fis:

mmr
Rm

r ðr0; E0Þ
Rtðr0; E0Þ f

m
r ðE0;X0 ! E;XÞ: ð8Þ

mmr and Rm
r are the number of neutrons produced from, and the

macroscopic cross section of, r-type reaction of isotope m, respec-
tively. f mr is the transfer probability function with f mr ðE0;X0 !
E;XÞdEdX denoting the probability that a collision of type r of iso-
tope m by a neutron of direction X0 and energy E0 will produce a
neutron in direction interval dX about X with energy in dE about
E. Other notations follow standard.

The eigenvalue k in Eq. (1) implies the number of next-
generation fission neutrons generated from a source neutron sam-
pled by the current-generation fission source distribution, S. With
the use of the normalization condition

R
SðPÞdP ¼ 1, then, it can be

determined by

k ¼ hHSi: ð9Þ
The angular bracket < > implies the phase space integral (PSI) of the
quantity in it over P. Thus k or hHSi represents simply the PSI of Eq.
(3) over P.

The multiplication factor k is related to the static reactivity q of
the nuclear reactor system by

q ¼ 1� 1
k
: ð10Þ

Because of this relation, q is viewed as a function of both the reactor
state variables like fuel or moderator temperature, coolant density,
etc. and uncertain model parameters such as nuclear cross section
data which are inputted to determine k by Eq. (1). If one denotes
uncertain nuclear cross section input parameters by x and the reac-
tor state parameters by y, then one may presume the functional
relationship of q and k with these parameters by q � qðx; yÞ and
k � kðx; yÞ, respectively. Noting that the reactivity coefficient for
the reactor state parameter y is defined as @q=@y, one can obtain
the following expression for it from Eqs. (9) and (10).

@q
@y

¼ 1

hHSi2
@hHSi
@y

¼ 1

hHSi2
@H
@y

S
� �

þ H
@S
@y

� �� �
ð11Þ
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