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a b s t r a c t

Assessing rare event probabilities still suffers from its computational cost despite some available
methods widely accepted by researchers and engineers. For low to moderately high dimensional pro-
blems and under the assumption of a smooth limit-state function, adaptive strategies based on surrogate
models represent interesting alternative solutions. This paper presents such an adaptive method based
on support vector machine surrogates used in regression. The key idea is to iteratively construct sur-
rogates which quickly explore the safe domain and focus on the limit-state surface in its final stage.
Highly accurate surrogates are constructed at each iteration by minimizing an estimation of the leave-
one-out error with the cross-entropy method. Additional training points are generated with the
Metropolis–Hastings algorithm modified by Au and Beck and a local kernel regression is made over a
subset of the known data. The efficiency of the method is tested on examples featuring various chal-
lenges: a highly curved limit-state surface at a single most probable failure point, a smooth high-
dimensional limit-state surface and a parallel system.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Assessing the reliability of highly safe systems is a field of great
importance in many engineering applications. Despite some effi-
cient and widely accepted methods, assessing low failure prob-
abilities is still often too computationally demanding in real
applications in which a single call to a numerical model may last
minutes, hours or even days (e.g. with finite element solutions in
structural mechanics). Some other challenging situations also arise
when the stochastic inputs are modeled by means of a large
number of random variables (e.g. with inputs modeled as random
fields or random processes) and/or when the so-called limit-state
surface used for defining the failure criterion(a) is characterized by
a rather intricate geometry in the random space (e.g. highly curved
or noisy limit-state surfaces, multiple most probable failure points
of similar weights).

The scope of this work is restricted to time-invariant reliability
problems such as defined in the structural reliability literature
[1,2] a.k.a. static simulation problems or models by some other
authors [3,4], in which time is not an explicit variable. The prob-
ability w.r.t. an undesired or unsafe state of the system of interest

is expressed in terms of a n-dimensional random vector X of
known continuous joint probability density function f X. Failure is
defined in terms of a so-called limit-state function (LSF)
g : X DRn-R; x ↦ gðxÞ, which can only be evaluated pointwise
and where x represents a realization of the random vector X. The
analysis is restricted here to a single function g but this function
may represent a combination of several failure modes in more
general settings. The limit-state surface (LSS) F 0

x ¼
xAX : gðxÞ ¼ 0

� �
divides the space of realizations of the random

vector X in a failure domain conventionally defined as F x ¼
xAX : gðxÞr0

� �
and a safe domain defined as the com-

plementary domain F x ¼ xAX : gðxÞ40
� �

. The failure probability
pf therefore reads:

pf ¼
Z
F x

f XðxÞ dx¼ Ef X 1F x Xð Þ�� ð1Þ

where dx¼ dx1⋯dxn and 1F x is the indicator function of the failure
domain F x: 1F x xð Þ ¼ 1 if xAF x , 1F x xð Þ ¼ 0 otherwise.

We will assume here that we can reformulate this problem in
the so-called standard space u A Rn, where U is a random vector
with independent standard normal components and φnðuÞ is the
n-dimensional standard normal joint probability density function
(pdf). This can be achieved e.g. by means of the Nataf [5] or
Rosenblatt [6] transform, not recalled here for the sake of brevity.
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The failure probability pf in the standard normal space then reads:

pf ¼
Z
Fu

φnðuÞ du¼ Eφn
1Fu Uð Þ�� ð2Þ

where F u ¼ uARn : GðuÞ ¼ gðxðuÞÞr0
� �

and du¼ du1;…;dun.
The failure probability pf in Eq. (1) or (2) can be basically

assessed by two main types of methods: sampling methods such as
the Monte Carlo method which give an estimate of pf based on
samples of the random vector X or approximation methods whose
objective is to construct a surrogate of the true LSF g (or G in the
standard space) based on some a priori selected assumptions and
use it for the evaluation of pf .

Among sampling methods, the crude Monte Carlo method does
not make any hypothesis on the shape of the LSS but it is known
for its inefficiency for estimating probabilities of rare events.
Several sampling techniques are available in order to alleviate the
computational expense in terms of number of calls to the LSF
required for a given accuracy on the failure probability estimate.
We here focus on one of them known as subset simulation [7] or
adaptive multilevel splitting by some other authors [8]. It is worth
mentioning that this very efficient method still requires thousands
of calls to the LSF for an acceptable accuracy on pf estimate.

Interesting alternatives to sampling methods have been pro-
posed in an effort to still lower the computational cost but at the
detriment of some predefined and restrictive assumptions. FORM
and SORM techniques (see e.g. [1,2]) are examples of such meth-
ods, which consist in respectively considering the first- and
second-order Taylor polynomial of G at the so-called most prob-
able failure point (MPFP) un in the standard space. Surrogate
models a.k.a. metamodels or simply response surfaces also belong
to the category of approximation methods. Several types of func-
tion approximation are available including polynomial response
surfaces, artificial neural networks, moving least-squares, Kriging
(a.k.a. Gaussian process emulators), support vector machines
(SVMs), polynomial chaos expansions among others. The common
principle of these methods is to construct a surrogate model from
a set of known input–output pairs referred to as design of
experiments (DoE) or training set in the sequel. Several adaptive
strategies have been developed in the context of reliability
assessment with moving least squares [9], artificial neural net-
works [10,11], Kriging [12–16], SVMs [17–21], polynomial chaos
expansions [22,23] among others. A common idea shared in these
works is to start from an initial set of training points and enrich it
by sequentially adding new training points based on a selected
criterion. These criteria exploit the information gained from the
surrogate model constructed at the current iteration: mean and
variance of the Kriging predictor for Gaussian process emulators,
distances of points of the training set to the approximate LSS for
SVMs used in classification, etc. The main differences between the
developed methods stem from the selected enrichment strategies
although it is quite acknowledged that training points added close
to the LSS contribute the most to the accuracy of the estimated
failure probability. It is important to point out that the functional
approximation of the selected type of surrogate must be able to
capture the unknown geometry of the LSS. Due to the underlying
hypotheses of the chosen surrogate model (degree and set of
terms used in a polynomial response surface, type of kernel for
Kriging and SVMs, etc.), this is not always possible whatever the
size of the training set and, as a consequence, the failure prob-
ability assessed from the surrogate could be biased. It is however
worth mentioning that some sampling-based techniques not
addressed in this paper are available and may be applied to the
constructed surrogate in order to correct this bias at the expense
of additional calls to the LSF, such as explored e.g. in [24].

The objective of this paper is to propose an adaptive technique
for assessing low failure probabilities based on SVM surrogates. The

SVM model used in the present work is based on the ϵ-insensitive
loss function [25] as explored in the context of reliability assess-
ment in a few other works [26–30]. This regression approach differs
from most of the works based on SVMs which consider reliability
assessment as a classification problem [17,19–21,31,32]. The acro-
nym SVR will be used for SVMs in regression, as opposed to SVC for
classification. The proposed method consists in constructing a
sequence of adaptive SVR surrogates eGsðuÞ, s¼ 1;…; smax in the
standard space with training points which progressively reach and
populate the failure domain F u. The new training points at each
iteration s are generated from the currently constructed SVR sur-
rogate model eGs by means of Monte Carlo Markov chains (MCMC)
with the modified Metropolis–Hastings algorithm of Au and Beck
[7]. An updated SVR surrogate model is constructed at each itera-
tion s. This SVR is obtained by training over a subset of all the points
generated from s¼1 whose LSF values are known. Finding the most
accurate surrogate from the training data at each iteration s is a
central issue. In the proposed method, optimal values are obtained
for the surrogate model parameters by minimizing an estimate of
the leave-one-out (LOO) error proposed by Chang and Lin [33] for ϵ-
insensitive SVR. This is achieved with the robust and efficient cross-
entropy (CE) method [34]. The approximation of the failure prob-
ability pf is evaluated from the SVR surrogate eGsmax trained at the
final iteration when a prescribed accuracy criterion is met. The
proposed method is applied to three challenging problems in order
to test its applicability: a highly curved LSS, a high dimensional
smooth LSS and a parallel system. Results are compared with those
obtained by other methods in previously published papers.

The paper is organized as follows. SVM regression by means of
L1-ϵ-SVR is presented in Section 2. This section also describes the
efficient stochastic search technique applied to an estimate of the
generalization error in order to tune the hyperparameters of the
SVR surrogates. The adaptive strategy for reliability assessment is
described in Section 3. The three application examples are treated
in Section 4. A conclusion is finally given in Section 5 with some
important remarks and perspectives.

2. Support vector machine surrogates

Support vector machines (SVMs) are parts of statistical learning
theory and the reader may refer to [35,36] for a presentation of
their theoretical basis. SVMs have been successfully applied to a
number of fields over the last 20 years such as handwritten digits
and objects recognition, face detection, text categorization, gene
selection for disease classification, etc. SVMs have been initially
introduced for classification problems but later extended to
regression [37]. SVMs are known for their good generalization
performances and their ability to handle nonlinear models by
means of kernels. The optimization problem to solve both in
classification and regression for defining the SVMmodel is convex.
This therefore guarantees a unique and global solution and allows
a primal–dual interpretation. Nonlinear models assume an implicit
mapping from the input space to the so-called feature space, by
using a kernel in the dual optimization problem. The notations
used in this section are similar to those commonly found in the
SVM literature for a clear reference to existing works. In the pre-
sent framework, x stands for a point of the standard space u, y
represents the unknown output of the LSF G at a point of interest
u, ðxi; yiÞ for i¼ 1;…;N are the given data pairs of the training set
such that yi ¼ GðuiÞ and the SVR model ef : x ↦ ef ðxÞ ¼ f ðxÞþb
represents the surrogate model eGs : u ↦ eGsðuÞ which needs to be
constructed at current iteration s.
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